Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{2\cdot4}+\frac{1}{4\cdot6}+...+\frac{1}{\left(2x-2\right)\cdot2x}=\frac{1}{8}\left(x\inℕ;x\ge2\right)\)
Đặt \(A=\frac{1}{2\cdot4}+\frac{1}{4\cdot6}+...+\frac{1}{\left(2x-2\right)2x}\)
\(2A=\frac{2}{2\cdot4}+\frac{2}{4\cdot6}+...+\frac{2}{\left(2x-2\right)2x}\)
\(2A=\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+....+\frac{1}{2x-2}-\frac{1}{2x}\)
\(2A=\frac{1}{2}-\frac{1}{2x}=\frac{x-1}{2x}\)
\(\Rightarrow A=\frac{x-1}{2x}:2=\frac{x-1}{2x}\cdot\frac{1}{2}=\frac{x-1}{4x}\)
Mà \(A=\frac{1}{8}\Rightarrow\frac{x-1}{4}=\frac{1}{8}\)
\(\Leftrightarrow8x-8=4\)
\(\Leftrightarrow8x=12\)
\(\Leftrightarrow x=\frac{12}{8}=\frac{3}{2}\left(ktm\right)\)
Vậy không có x thỏa mãn yêu cầu đề bài
a) \(\frac{5}{6}=\frac{x-1}{x}\)
\(5x=6x-6\)
\(6x-5x=6\)
\(x=6\)
các câu còn lại lm tương tự
hok tốt!!
b) \(\frac{1}{2}=\frac{x+1}{3x}\)
\(\Rightarrow1.3x=2.\left(x+1\right)\)
\(3x=2x+2\)
\(3x-2x=2\)
\(x=2\)
Vậy x=2
các câu khác bạn làm tương tự
f) \(\frac{2x-1}{21}=\frac{3}{2x+1}\)( ĐKXĐ : \(x\ne-\frac{1}{2}\))
\(\Leftrightarrow\left(2x-1\right)\left(2x+1\right)=21\cdot3\)
\(\Leftrightarrow4x^2-1=63\)
\(\Leftrightarrow4x^2=64\)
\(\Leftrightarrow x^2=16\)
\(\Leftrightarrow x^2=\left(\pm4\right)^2\)
\(\Leftrightarrow x=\pm4\)(tmđk)
h) \(\frac{10x+5}{6}=\frac{5}{x+1}\)( ĐKXĐ : \(x\ne-1\))
\(\Leftrightarrow\left(10x+5\right)\left(x+1\right)=6\cdot5\)
\(\Leftrightarrow10x^2+15x+5=30\)
\(\Leftrightarrow10x^2+15x+5-30=0\)
\(\Leftrightarrow10x^2+15x-25=0\)
\(\Leftrightarrow5\left(2x^2+3x-5\right)=0\)
\(\Leftrightarrow2x^2+3x-5=0\)
\(\Leftrightarrow2x^2-2x+5x-5=0\)
\(\Leftrightarrow2x\left(x-1\right)+5\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(2x+5\right)\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\2x+5=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\x=-\frac{5}{2}\end{cases}}\)(tmđk)
f) \(\frac{2x-1}{21}=\frac{3}{2x+1}\)
\(\Leftrightarrow\left(2x-1\right)\left(2x+1\right)=21.3\)
\(\Leftrightarrow4x^2-1=63\)
\(\Leftrightarrow4x^2=64\)
\(\Leftrightarrow x^2=16\)\(\Leftrightarrow x^2=4^2\)\(\Leftrightarrow x=4\)
Vậy \(x=4\)
h) \(\frac{10x+5}{6}=\frac{5}{x+1}\)
\(\Leftrightarrow\left(10x+5\right)\left(x+1\right)=5.6\)
\(\Leftrightarrow5\left(2x+1\right)\left(x+1\right)=30\)
\(\Leftrightarrow\left(2x+1\right)\left(x+1\right)=6\)
\(\Leftrightarrow2x^2+3x+1=6\)
\(\Leftrightarrow2x^2+3x-5=0\)
\(\Leftrightarrow\left(2x^2-2x\right)+\left(5x-5\right)=0\)
\(\Leftrightarrow2x\left(x-1\right)+5\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(2x+5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\2x+5=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\2x=-5\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\x=\frac{-5}{2}\end{cases}}\)
Vậy \(x\in\left\{\frac{-5}{2};1\right\}\)
111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111112222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222
\(\frac{-2}{3}\left(x-\frac{1}{4}\right)=\frac{1}{3}\left(2x-1\right)\Rightarrow x=0,375\)
\(\frac{x+2}{2x+1}=\frac{x}{2x-1}\) (ĐK:\(x\ne\pm\frac{1}{2}\))
\(\Leftrightarrow\)\(\frac{\left(x+2\right)\left(2x-1\right)}{\left(2x+1\right)\left(2x-1\right)}=\frac{x\left(2x+1\right)}{\left(2x+1\right)\left(2x-1\right)}\)
\(\Leftrightarrow\)\(\left(x+2\right)\left(2x-1\right)=x\left(2x+1\right)\)
\(\Leftrightarrow2x^2-x+4x-2=2x^2+x\)
\(\Leftrightarrow2x^2-x+4x-2-2x^2-x=0\)
\(\Leftrightarrow2x-2=0\)
\(\Leftrightarrow2\left(x-1\right)=0\)
\(\Leftrightarrow x-1=0\)
\(\Leftrightarrow x=1\left(TM\right)\)
Vậy x=1
\(\frac{x+2}{2x+1}=\frac{x}{2x-1}\)
Ta có:(x+2)(2x-1)=x.(2x+1)
2x2+3x-2=2x2+x
Sau đó tự làm