\(\frac{2x-3}{x+4}\) = \(\frac{5}{4}\).
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 8 2020

\(\frac{2x-3}{x+4}=\frac{5}{4}\)

\(\Leftrightarrow4\left(2x-3\right)=5\left(x+4\right)\)

\(\Leftrightarrow8x-12=5x+20\)

\(\Leftrightarrow3x=32\)

\(\Leftrightarrow x=\frac{32}{3}\)

8 tháng 8 2020

ĐK : \(x\ne-4\)

\(\frac{2x-3}{x+4}=\frac{5}{4}\Leftrightarrow8x-12=5x+20\)

\(\Leftrightarrow3x-32=0\Leftrightarrow x=\frac{32}{3}\)

5 tháng 6 2019

1.b) \(\left(\left|x\right|-3\right)\left(x^2+4\right)< 0\)

\(\Rightarrow\hept{\begin{cases}\left|x\right|-3\\x^2+4\end{cases}}\) trái dấu

\(TH1:\hept{\begin{cases}\left|x\right|-3< 0\\x^2+4>0\end{cases}}\Leftrightarrow\hept{\begin{cases}\left|x\right|< 3\\x^2>-4\end{cases}}\Leftrightarrow x\in\left\{0;\pm1;\pm2\right\}\)

\(TH1:\hept{\begin{cases}\left|x\right|-3>0\\x^2+4< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}\left|x\right|>3\\x^2< -4\end{cases}}\Leftrightarrow x\in\left\{\varnothing\right\}\)

Vậy \(x\in\left\{0;\pm1;\pm2\right\}\)

5 tháng 6 2019

Bài 1b) có thể giải gọn hơn nhuư thế này

3 tháng 12 2017

a,-x-\(\frac{2}{3}\)=-\(\frac{6}{7}\)\(\Rightarrow\)-x=-\(\frac{6}{7}\)+\(\frac{2}{3}\)=\(\frac{-18}{21}\)+\(\frac{14}{21}\)=\(\frac{-4}{21}\)\(\Rightarrow\)x=\(\frac{4}{21}\)

3 tháng 12 2017

cần nữa không mình giải tiếp cho

26 tháng 7 2016

B1:

a) \(\frac{x+4}{x+3}=\frac{x+9}{x+4}\)

-->(x+4)(x+4)=(x+3)(x+9)

\(x^2\)+4x+4x+16=\(x^2\)+9x+3x+27

\(x^2-x^2\)+4x+4x-9x-3x= - 16+27

 - 4x=11

x=\(\frac{-4}{11}\)

b) \(\frac{x-5}{x+3}=\frac{x-4}{x+6}\)

-->(x-5)(x+6)=(x+3)(x-4)

\(x^2\)+6x-5x-30=\(x^2\)-4x+3x-12

\(x^2-x^2\)+6x-5x+4x-3x=30-12

2x=18

x=9

c)\(\frac{3x-1}{3x}=\frac{2x-1}{2x+1}\)

--> (3x-1)(2x+1)=3x.(2x-1)

\(6x^2\)+3x-2x-1=\(6x^2\)-3x

\(6x^2-6x^2\)+3x-2x+3x=1

4x=1

x=\(\frac{1}{4}\)

 

26 tháng 7 2016

Hỏi đáp Toán

14 tháng 10 2020

a) \(\left|2x+\frac{3}{4}\right|=\frac{1}{2}\)

     \(\orbr{\begin{cases}2x+\frac{3}{4}=\frac{1}{2}\\2x+\frac{3}{4}=\frac{-1}{2}\end{cases}}\) =>   \(\orbr{\begin{cases}2x=\frac{1}{2}-\frac{3}{4}\\2x=\frac{-1}{2}-\frac{3}{4}\end{cases}}\)  =>   \(\orbr{\begin{cases}2x=\frac{-1}{4}\\2x=\frac{-5}{4}\end{cases}}\) =>   \(\orbr{\begin{cases}x=\frac{-1}{8}\\x=\frac{-5}{8}\end{cases}}\)

Vậy \(x=\left\{\frac{-1}{8},\frac{-5}{8}\right\}\)

b) \(\frac{3x}{2,7}=\frac{\frac{1}{4}}{2\frac{1}{4}}\)\(\frac{3x}{2,7}=\frac{\frac{1}{4}}{\frac{9}{4}}\)

=> \(3x.\frac{9}{4}=2,7.\frac{1}{4}\)=>  \(\frac{27x}{4}=\frac{27}{40}\)

\(27x.40=27.4\)

\(1080.x=108\)

             \(x=\frac{1}{10}\)

Vậy \(x=\frac{1}{10}\)

c) \(\left|x-1\right|+4=6\)

\(\left|x-1\right|=6-4\)

\(\left|x-1\right|=2\)

\(\orbr{\begin{cases}x-1=2\\x-1=-2\end{cases}}\)=>  \(\orbr{\begin{cases}x=3\\x=-1\end{cases}}\)

Vậy \(x=\left[3,-1\right]\)

d) \(\frac{x}{3}=\frac{y}{5}=>\frac{y}{5}=\frac{x}{3}=>\frac{y-x}{5-3}=\frac{24}{2}=12\)

e) \(\left(x^2-3\right)^2=16\)

\(\left(x^2-3\right)^2=4^2\)\(=>x^2-3=4\)

\(x^2=7=>x=\sqrt{7}\)

Vậy \(x=\sqrt{7}\)

f) \(\frac{3}{4}+\frac{2}{5}x=\frac{29}{60}\)

               \(\frac{2}{5}x=\frac{29}{60}-\frac{3}{4}\) 

               \(\frac{2}{5}x=-\frac{4}{15}\)

          \(x=-\frac{4}{15}:\frac{2}{5}=-\frac{4}{15}.\frac{5}{2}=-\frac{2}{3}\)

Vậy \(x=-\frac{2}{3}\)

g) \(\left(-\frac{1}{3}\right)^3.x=\frac{1}{81}\)

\(\left(-\frac{1}{27}\right).x=\frac{1}{81}\)

\(x=\left(-\frac{1}{27}\right):\frac{1}{81}=\left(-\frac{1}{27}\right).81=-3\)

Vậy \(x=-3\)

k)\(\frac{3}{4}-\frac{2}{5}x=\frac{29}{60}\)

\(\frac{2}{5}x=\frac{3}{4}-\frac{29}{60}\)

\(\frac{2}{5}x=\frac{4}{15}\)

      \(x=\frac{2}{5}-\frac{4}{15}=>x=\frac{2}{15}\)

Vậy \(x=\frac{2}{15}\)

I) \(\frac{3}{5}x-\frac{1}{2}=-\frac{1}{7}\)

\(\frac{3}{5}x=-\frac{1}{7}+\frac{1}{2}\)

\(\frac{3}{5}x=\frac{5}{14}\)

\(x=\frac{5}{14}:\frac{3}{5}=\frac{5}{14}.\frac{5}{3}=\frac{25}{42}\)

Vậy \(x=\frac{25}{42}\)

26 tháng 4 2018

Câu b) tạm thời ko bít làm =.= 

Bài 1 : 

\(d)\) \(\frac{4^5+4^5+4^5+4^5}{3^5+3^5+3^5}.\frac{6^5+6^5+6^5+6^5+6^5+6^5}{2^5+2^5}=2x\)

\(\Leftrightarrow\)\(\frac{4^5.4}{3^5.3}.\frac{6^5.6}{2^5.2}=2x\)

\(\Leftrightarrow\)\(\frac{4^6}{3^6}.\frac{6^6}{2^6}=2x\)

\(\Leftrightarrow\)\(\frac{2^{12}}{3^6}.\frac{2^6.3^6}{2^6}=2x\)

\(\Leftrightarrow\)\(\frac{2^{12}}{3^6}.\frac{3^6}{1}=2x\)

\(\Leftrightarrow\)\(2^{12}=2x\)

\(\Leftrightarrow\)\(x=\frac{2^{12}}{2}\)

\(\Leftrightarrow\)\(x=2^{11}\)

\(\Leftrightarrow\)\(x=2048\)

Vậy \(x=2048\)

Chúc bạn học tốt ~ 

26 tháng 4 2018

Bài 1 : 

\(a)\) Ta có : 

\(4+\frac{x}{7+y}=\frac{4}{7}\)

\(\Leftrightarrow\)\(\frac{x}{7+y}=\frac{4}{7}-4\)

\(\Leftrightarrow\)\(\frac{x}{7+y}=\frac{-24}{7}\)

\(\Leftrightarrow\)\(\frac{x}{-24}=\frac{7+y}{7}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

\(\frac{x}{-24}=\frac{7+y}{7}=\frac{x+7+y}{-24+7}=\frac{22+7}{-17}=\frac{29}{-17}=\frac{-29}{17}\)

Do đó : 

\(\frac{x}{-24}=\frac{-29}{17}\)\(\Rightarrow\)\(x=\frac{-29}{17}.\left(-24\right)=\frac{696}{17}\)

\(\frac{7+y}{7}=\frac{-29}{17}\)\(\Rightarrow\)\(y=\frac{-29}{17}.7-7=\frac{-322}{17}\)

Vậy \(x=\frac{696}{17}\) và \(y=\frac{-322}{17}\)

Chúc bạn học tốt ~ 

31 tháng 8 2021

a, \(\frac{x}{3}=\frac{y}{4};\frac{y}{3}=\frac{z}{5}\Rightarrow\frac{x}{9}=\frac{y}{12}=\frac{z}{20}\)

Theo tính chất dãy tỉ số bằng nhau 

\(\frac{x}{9}=\frac{y}{12}=\frac{z}{20}=\frac{2x-3y+z}{18-36+20}=\frac{6}{2}=3\Rightarrow x=27;y=36;z=60\)

b, \(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}\Rightarrow\frac{x}{\frac{3}{2}}=\frac{y}{\frac{4}{3}}=\frac{z}{\frac{5}{4}}\)

Theo tính chất dãy tỉ số bằng nhau 

\(\frac{x}{\frac{3}{2}}=\frac{y}{\frac{4}{3}}=\frac{z}{\frac{5}{4}}=\frac{x+y+z}{\frac{3}{2}+\frac{4}{3}+\frac{5}{4}}=\frac{49}{\frac{49}{12}}=12\)

\(\Rightarrow x=18;y=24;z=30\)

31 tháng 8 2021

c, \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-4}{4}\Rightarrow\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-4}{4}\)

Theo tính chất dãy tỉ số bằng nhau 

\(\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-4}{4}=\frac{2x+3y-z-2-6+4}{4+9-4}=\frac{46}{9}\)

\(\Rightarrow x=\frac{101}{9};y=\frac{52}{3};z=\frac{220}{9}\)

d, Đặt \(x=2k;y=3k;z=5k\Rightarrow xyz=810\Rightarrow30k^3=810\)

\(\Leftrightarrow k^3=27\Leftrightarrow k=3\)Với k = 3 thì \(x=6;y=9;z=15\)

15 tháng 9 2019

a, \(\frac{x}{4}=\frac{y}{5}\) và x + y = 4

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{x}{4}=\frac{y}{5}=\frac{x+y}{4+5}=\frac{4}{9}\)

=> \(\hept{\begin{cases}\frac{x}{4}=\frac{4}{9}\\\frac{y}{5}=\frac{4}{9}\end{cases}}\Rightarrow\hept{\begin{cases}9x=16\\9y=20\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{16}{9}\\y=\frac{20}{9}\end{cases}}\)

b, \(\frac{x}{6}=\frac{y}{3}\) và x - 2y = 5

Ta có : \(\frac{x}{6}=\frac{y}{3}\)=> \(\frac{x}{6}=\frac{2y}{6}\)

Áp dụng t/c dãy tỉ số bằng nhau ta có :

\(\frac{x}{6}=\frac{2y}{6}=\frac{x-2y}{6-6}=\frac{5}{0}\) vô lý

c, \(\frac{x}{3}=\frac{y}{7}\) và x - 5y = 4

Ta có : \(\frac{x}{3}=\frac{y}{7}\)=> \(\frac{x}{3}=\frac{5y}{35}\)

Áp dụng t/c dãy tỉ số bằng nhau ta có :

\(\frac{x}{3}=\frac{5y}{35}=\frac{x-5y}{3-35}=\frac{4}{-32}=\frac{-4}{32}=\frac{-1}{8}\)

=> \(\hept{\begin{cases}\frac{x}{3}=\frac{-1}{8}\\\frac{y}{7}=\frac{-1}{8}\end{cases}\Rightarrow}\hept{\begin{cases}8x=-3\\8y=-7\end{cases}}\Rightarrow\hept{\begin{cases}x=-\frac{3}{8}\\x=-\frac{7}{8}\end{cases}}\)

d, Tương tự áp dụng như bài a,c

8 tháng 10 2019

a, \(-\frac{5}{7}-\left(\frac{1}{2}-x\right)=-\frac{11}{4}\)

\(\frac{1}{2}-x=\frac{57}{28}\)

\(x=-\frac{43}{28}\)

b, \(\left(2x-1\right)^2-5=20\)

\(\Rightarrow\left(2x-1\right)^2=25\)

\(\Rightarrow2x-1=\pm5\)

\(\Rightarrow\left[{}\begin{matrix}2x-1=5\\2x-1=-5\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2x=6\\2x=-4\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)