K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 12 2021

\(A=\dfrac{2\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}+\dfrac{\left(\sqrt{x}+3\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}+\dfrac{3-11\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)\(A=\dfrac{2x-6\sqrt{x}+x+\sqrt{x+}3\sqrt{x}+3+3-11\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)\(A=\dfrac{3x-13\sqrt{x}+6}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)

b: \(\sqrt{x-1}< x+3\)

nên \(\left\{{}\begin{matrix}x-1>=0\\\left(x-1\right)^2< \left(x+3\right)^2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>=1\\x^2-2x+1-x^2-6x-9< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x>=1\\-8x-8< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>=1\\-8x< 8\end{matrix}\right.\Leftrightarrow x>=1\)

c: \(\Leftrightarrow\left\{{}\begin{matrix}x>=6\\x^2-6x+9>x^2-12x+36\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>=6\\6x>27\end{matrix}\right.\Leftrightarrow x>=6\)

Bài 2: 

\(=\sqrt{\left(x-y\right)^2}=\left|x-y\right|=y-x\)

25 tháng 8 2021

a)√x−1=2(x≥1)
\(x-1=4 \)
x=5
b)
\(\sqrt{3-x}=4\)
 (x≤3)
\(\left(\sqrt{3-x}\right)^2=4^2\)
x-3=16
x=19





 

a: Ta có: \(\sqrt{x-1}=2\)

\(\Leftrightarrow x-1=4\)

hay x=5

b: Ta có: \(\sqrt{3-x}=4\)

\(\Leftrightarrow3-x=16\)

hay x=-13

c: Ta có: \(2\cdot\sqrt{3-2x}=\dfrac{1}{2}\)

\(\Leftrightarrow\sqrt{3-2x}=\dfrac{1}{4}\)

\(\Leftrightarrow-2x+3=\dfrac{1}{16}\)

\(\Leftrightarrow-2x=-\dfrac{47}{16}\)

hay \(x=\dfrac{47}{32}\)

d: Ta có: \(4-\sqrt{x-1}=\dfrac{1}{2}\)

\(\Leftrightarrow\sqrt{x-1}=\dfrac{7}{2}\)

\(\Leftrightarrow x-1=\dfrac{49}{4}\)

hay \(x=\dfrac{53}{4}\)

e: Ta có: \(\sqrt{x-1}-3=1\)

\(\Leftrightarrow\sqrt{x-1}=4\)

\(\Leftrightarrow x-1=16\)

hay x=17

f:Ta có: \(\dfrac{1}{2}-2\cdot\sqrt{x+2}=\dfrac{1}{4}\)

\(\Leftrightarrow2\cdot\sqrt{x+2}=\dfrac{1}{4}\)

\(\Leftrightarrow\sqrt{x+2}=\dfrac{1}{8}\)

\(\Leftrightarrow x+2=\dfrac{1}{64}\)

hay \(x=-\dfrac{127}{64}\)

22 tháng 9 2021

`P=(2\sqrtx+1)/(2sqrtx+3)`

`x>=0=>sqrtx>=0`

`=>2sqrtx+1>=1>0,2sqrtx+3>=3>0`

`=>P>0`

Mặt khác:

`P=1-2/(2sqrtx+3)`

Vì `2sqrtx+3>=3>0`

`=>P<=1-2/3=1/3`

`=>0<P<=1/3`

`=>a=0,b=1/3`

AH
Akai Haruma
Giáo viên
22 tháng 6 2023

1.

$x+3+\sqrt{x^2-6x+9}=x+3+\sqrt{(x-3)^2}=x+3+|x-3|$

$=x+3+(3-x)=6$

2.

$\sqrt{x^2+4x+4}-\sqrt{x^2}=\sqrt{(x+2)^2}-\sqrt{x^2}$

$=|x+2|-|x|=x+2-(-x)=2x+2$
3.

$\sqrt{x^2+2\sqrt{x^2-1}}-\sqrt{x^2-2\sqrt{x^2-1}}$

$=\sqrt{(\sqrt{x^2-1}+1)^2}-\sqrt{(\sqrt{x^2-1}-1)^2}$

$=|\sqrt{x^2-1}+1|+|\sqrt{x^2-1}-1|$

$=\sqrt{x^2-1}+1+|\sqrt{x^2-1}-1|$

 

AH
Akai Haruma
Giáo viên
22 tháng 6 2023

4.

$\frac{\sqrt{x^2-2x+1}}{x-1}=\frac{\sqrt{(x-1)^2}}{x-1}$

$=\frac{|x-1|}{x-1}=\frac{x-1}{x-1}=1$

5.

$|x-2|+\frac{\sqrt{x^2-4x+4}}{x-2}=2-x+\frac{\sqrt{(x-2)^2}}{x-2}$
$=2-x+\frac{|x-2|}{x-2}|=2-x+\frac{2-x}{x-2}=2-x+(-1)=1-x$

6.

$2x-1-\frac{\sqrt{x^2-10x+25}}{x-5}=2x-1-\frac{\sqrt{(x-5)^2}}{x-5}$

$=2x-1-\frac{|x-5|}{x-5}$

\(P=A:B=\dfrac{\sqrt{x}+2}{\sqrt{x}}:\dfrac{\sqrt{x}+2}{\sqrt{x}+1}=\dfrac{\sqrt{x}+1}{\sqrt{x}}\)

P>3/2

=>P-3/2>0

=>\(\dfrac{\sqrt{x}+1}{\sqrt{x}}-\dfrac{3}{2}>0\)

=>\(\dfrac{2\sqrt{x}+2-3\sqrt{x}}{2\sqrt{x}}>0\)

=>-căn x+2>0

=>-căn x>-2

=>0<x<4

28 tháng 9 2018

\(A=\left(\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3x+3}{x-9}\right):\left(\frac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)\) ĐKXĐ : x > 0 , x khác 9 

\(A=\left(\frac{2\sqrt{x}\left(\sqrt{x}-3\right)+\sqrt{x}\left(\sqrt{x}+3\right)-3x+3}{x-9}\right):\left(\frac{2\sqrt{x}-2-\sqrt{x}+3}{\sqrt{x}-3}\right)\)

\(A=\frac{2x-6\sqrt{x}+x+3\sqrt{x}-3x+3}{x-9}.\frac{\sqrt{x}-3}{\sqrt{x}+1}\)

\(A=\frac{-3\sqrt{x}}{\sqrt{x}+3}.\frac{1}{\sqrt{x}+1}\)

\(A=\frac{-3\sqrt{x}}{x+4\sqrt{x}+4}\)

\(A=\frac{-3\sqrt{x}}{\left(\sqrt{x}+2\right)^2}\)

28 tháng 9 2018

a) ĐKXĐ : x>hoặc = 0 ; x khác 9

Còn câu b,c,d để vài bữa mình làm tiếp cho bây giờ mình đi ngủ đã buồn ngủ quá !

                        ----------------- -Học tốt-----------------

Ta có: \(A=\dfrac{15\sqrt{x}-11}{x+2\sqrt{x}-3}-\dfrac{3\sqrt{x}-2}{\sqrt{x}-1}-\dfrac{2\sqrt{x}+3}{\sqrt{x}+3}\)

\(=\dfrac{15\sqrt{x}-11-3x-9\sqrt{x}+2\sqrt{x}+6-\left(2x-2\sqrt{x}+3\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{-3x+8\sqrt{x}-5-2x-\sqrt{x}+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{-5x+7\sqrt{x}-2}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{-5\sqrt{x}+2}{\sqrt{x}+3}\)

\(\Leftrightarrow A-\dfrac{2}{3}=\dfrac{-5\sqrt{x}+2}{\sqrt{x}+3}-\dfrac{2}{3}\)

\(\Leftrightarrow A-\dfrac{2}{3}=\dfrac{-15\sqrt{x}+6-2\sqrt{x}-6}{3\left(\sqrt{x}+3\right)}\)

\(\Leftrightarrow A-\dfrac{2}{3}=\dfrac{-17\sqrt{x}}{3\left(\sqrt{x}+3\right)}\le0\)

\(\Leftrightarrow A\le\dfrac{2}{3}\)