Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn tham khảo ở đây nhé, mình làm rồi đấy: https://olm.vn/hoi-dap/detail/211418926066.html
a)\(\left(3x-5\right)^{2006}+\left(y^2-1\right)^{2008}+\left(x-z\right)^{2010}=0\)
\(\Leftrightarrow\left(3x-5\right)^{2006}=0\Leftrightarrow3x-5=0\Leftrightarrow x=\frac{5}{3}\)
hay\(\left(y^2-1\right)^{2008}=0\Leftrightarrow y^2-1=0\Leftrightarrow y^2=1\Leftrightarrow y=\pm1\)
hay\(\left(x-z\right)^{2010}=0\Leftrightarrow x-z=0\Leftrightarrow\frac{5}{3}-z=0\Leftrightarrow z=\frac{5}{3}\)
V...\(x=\frac{5}{3},y=\pm1,z=\frac{5}{3}\)
b)Ta co:\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\Rightarrow\frac{x^2}{4}=\frac{y^2}{9}=\frac{z^2}{16}=\frac{x^2+y^2+z^2}{4+9+16}=\frac{116}{29}=4\)
Suy ra:\(\frac{x}{2}=4\Leftrightarrow x=8\)
\(\frac{y}{3}=4\Leftrightarrow y=12\)
\(\frac{z}{4}=4\Leftrightarrow z=16\)
V...
a) (x - 1)5 = -243
=> (x - 1)5 = (-3)5
=> x - 1 = -3
=> x = -3 + 1
=> x = -2
b) \(\frac{x+2}{11}+\frac{x+2}{12}+\frac{x+2}{13}=\frac{x+2}{14}+\frac{x+2}{15}\)
=> (x + 2).(1/11 + 1/12 +1/3 - 1/4 - 1/15) = 0
=> x + 2 = 0
=> x = 0 - 2
=> x = 2
\(\left|x+5\right|\le2\Rightarrow-2\le x+5\le2\)
\(\Rightarrow x+5\in\left\{-2;-1;0;1;2\right\}\)
\(\Rightarrow x\in\left\{-7;-6;-5;-4;-3\right\}\)
\(\left(x^2-5\right)\left(x^2-10\right)\left(x^2-15\right)\left(x^2-20\right)< 0\)
Xét 2 trường hợp:
TH1:Trong 4 số có 3 số âm 1 số dương.
Theo bài ra,ta có:\(\hept{\begin{cases}x^2-5>0\\x^2-10< 0\end{cases}}\Rightarrow\hept{\begin{cases}x^2>5\\x^2>10\end{cases}\Rightarrow}5< x^2< 10\Rightarrow x=3\left(h\right)x=-3\)
TH2:Trong 4 số có 3 số dương,1 số âm.
Theo bài ra,ta có:\(\hept{\begin{cases}x^2-20< 0\\x^2-15>0\end{cases}\Rightarrow}\hept{\begin{cases}x^2< 20\\x^2>15\end{cases}}\Rightarrow15< x^2< 20\Rightarrow x=4\left(h\right)x=-4\)
Vậy \(x\in\left\{3;-3;4;-4\right\}\)
a)
<=> \(x\left(0,2-1,2\right)+3,7=-6,3\)
<=> \(-x=-10\)
<=> \(x=10\)
b)
<=> \(x\left(x-1\right)=0\)
<=> \(\orbr{\begin{cases}x=0\\x=1\end{cases}}\)
d)
<=> \(2\sqrt{x+1}=8\)
<=> \(\sqrt{x+1}=4\)
<=> \(x=15\)
e)
<=> \(\orbr{\begin{cases}1-x=\sqrt{2}-0,\left(1\right)\\1-x=0,\left(1\right)-\sqrt{2}\end{cases}}\)
<=> \(\orbr{\begin{cases}1+0,\left(1\right)-\sqrt{2}=x\\x=1+\sqrt{2}-0,\left(1\right)\end{cases}}\)
a) 0,2x + ( -1, 2 )x + 3, 7 = -6, 3
<=> x( 0,2 - 1, 2 ) + 3, 7 = -6, 3
<=> -x = -10
<=> x = 10
b) x2 = x
<=> x2 - x = 0
<=> x( x - 1 ) = 0
<=> \(\orbr{\begin{cases}x=0\\x-1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}\)
c) 0,(12) : 1,(6) = x : 0,(4)
<=> 4/33 : 5/3 = x : 4/9
<=> 4/55 = x : 4/9
<=> x = 16/495
d) \(2\sqrt{x+1}-3=5\)
\(\Leftrightarrow2\sqrt{x+1}=8\)
\(\Leftrightarrow\sqrt{x+1}=4\)
\(\Leftrightarrow x+1=16\)
\(\Leftrightarrow x=15\)
e) \(\left|1-x\right|=\sqrt{2}-0,\left(1\right)\)
\(\Leftrightarrow\left|1-x\right|=\sqrt{2}-\frac{1}{9}\)
\(\Leftrightarrow\left|1-x\right|=\frac{-1+9\sqrt{2}}{9}\)
\(\Leftrightarrow\orbr{\begin{cases}1-x=\frac{-1+9\sqrt{2}}{9}\\1-x=\frac{1-9\sqrt{2}}{9}\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{10-9\sqrt{2}}{9}\\x=\frac{8+9\sqrt{2}}{9}\end{cases}}\)
a)\(\left(\frac{-1}{3}\right)^3\cdot x=\frac{1}{81}\) \(< =>\frac{-1}{27}x=\frac{1}{81}\)\(< =>x=\frac{-1}{3}\)
a) \(\frac{4}{9}x+\frac{2}{5}-\frac{1}{3}x=\frac{2}{9}-\frac{1}{4}x\)
\(\Leftrightarrow\frac{13}{36}x=-\frac{8}{45}\)
\(\Rightarrow x=-\frac{32}{65}\)
b) \(\left(\frac{2}{3}x-\frac{1}{2}\right).\left(-\frac{2}{3}\right)+\frac{1}{5}=-\frac{3}{4}\)
\(\Leftrightarrow-\frac{4}{9}x+\frac{1}{3}+\frac{1}{5}=-\frac{3}{4}\)
\(\Leftrightarrow\frac{4}{9}x=\frac{77}{60}\)
\(\Rightarrow x=\frac{231}{80}\)
a) \(\frac{4}{9}x+\frac{2}{5}-\frac{1}{3}x=\frac{2}{9}-\frac{1}{4}x\)
=> \(\frac{4}{9}x-\frac{1}{3}x+\frac{2}{5}-\frac{2}{9}+\frac{1}{4}x=0\)
=> \(\left(\frac{4}{9}x-\frac{1}{3}x+\frac{1}{4}x\right)+\left(\frac{2}{5}-\frac{2}{9}\right)=0\)
=> \(\frac{13}{36}x+\frac{8}{45}=0\)
=> \(\frac{13}{36}x=-\frac{8}{45}\)
=> \(x=-\frac{32}{65}\)
b) \(\left(\frac{2}{3}x-\frac{1}{2}\right)\cdot\frac{-2}{3}+\frac{1}{5}=\frac{-3}{4}\)
=> \(\left(\frac{2}{3}x-\frac{1}{2}\right)\cdot\frac{-2}{3}=-\frac{19}{20}\)
=> \(\frac{2}{3}x-\frac{1}{2}=\left(-\frac{19}{20}\right):\left(-\frac{2}{3}\right)=\left(-\frac{19}{20}\right)\cdot\left(-\frac{3}{2}\right)=\frac{57}{40}\)
=> \(\frac{2}{3}x=\frac{57}{40}+\frac{1}{2}=\frac{77}{40}\)
=> \(x=\frac{77}{40}:\frac{2}{3}=\frac{77}{40}\cdot\frac{3}{2}=\frac{231}{80}\)
a) \(\left|x\right|+\left|x+2\right|=0\)
Ta thấy \(\left|x\right|\ge0\)và \(\left|x+2\right|\ge0\)với mọi giá trị của x
Nên để \(\left|x\right|+\left|x+2\right|=0\)\(\Leftrightarrow\orbr{\begin{cases}\left|x\right|=0\\\left|x+2\right|=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x+2=0\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x=-2\end{cases}}}\)
Vậy \(x\in\left\{0;-2\right\}\)
b) \(\left|x\left(x^2-\frac{5}{4}\right)\right|=x\)
\(\Rightarrow x\left(x^2-\frac{5}{4}\right)=\pm x\)
TH1: \(x\left(x^2-\frac{5}{4}\right)=x\)\(\Rightarrow x^2-\frac{5}{4}=1\)\(\Rightarrow x^2=1+\frac{5}{4}=\frac{9}{4}=\left(\frac{3}{2}\right)^2\)\(\Rightarrow x=\frac{3}{2}\)
TH2: \(x\left(x^2-\frac{5}{4}\right)=-x\)\(\Rightarrow x^2-\frac{5}{4}=-1\)\(\Rightarrow x^2=-1+\frac{5}{4}=\frac{1}{4}=\left(\frac{1}{2}\right)^2\)\(\Rightarrow x=\frac{1}{2}\)
Vậy \(x\in\left\{\frac{3}{2};\frac{1}{2}\right\}\)