\(\sqrt{x-2}\le3\)

b, \(\sqrt{x+1}\ge...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 4 2020

hallo...

a)ĐKXĐ:x≥2

Ta có :√(x-2)≤3

⇔x-2≤9

⇔x≤11 và kết hợp vs dkxd thì 2≤x≤11

b)BẠN LÀM TƯƠNG TỰ NHA!!!

1 tháng 4 2020

có Latex sao không gõ?

28 tháng 10 2020

a) \(\sqrt{4-5x}=12\)

ĐK : x ≤ 4/5

Bình phương hai vế

⇔ \(4-5x=144\)

⇔ \(-5x=140\)

⇔ \(x=-28\)( tm )

b) \(\sqrt{1-4x+4x^2}=5\)

⇔ \(\sqrt{\left(1-2x\right)^2}=5\)

⇔ \(\left|1-2x\right|=5\)

⇔ \(\orbr{\begin{cases}1-2x=5\\1-2x=-5\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-2\\x=3\end{cases}}\)

c) \(\sqrt{4x+20}-3\sqrt{5+x}+\frac{3}{4}\sqrt{9x+45}=6\)

ĐK : x ≥ -5

⇔ \(\sqrt{2^2\left(x+5\right)}-3\sqrt{x+5}+\frac{3}{4}\sqrt{3^2\left(x+5\right)}=6\)

⇔ \(\left|2\right|\sqrt{x+5}-3\sqrt{x+5}+\frac{3}{4}\cdot\left|3\right|\sqrt{x+5}=6\)

⇔ \(2\sqrt{x+5}-3\sqrt{x+5}+\frac{9}{4}\sqrt{x+5}=6\)

⇔ \(\frac{5}{4}\sqrt{x+5}=6\)

⇔ \(\sqrt{x+5}=\frac{24}{5}\)

⇔ \(x+5=\frac{576}{25}\)

⇔ \(x=\frac{451}{25}\)( tm )

d)\(\sqrt{x-2}\le3\)

ĐK : x ≥ 2

⇔ \(x-2\le9\)

⇔ \(x\le11\)

Kết hợp với điều kiện => Nghiệm của bpt là 2 ≤ x ≤ 11

20 tháng 8 2017

a) \(\sqrt{9\left(x-1\right)^2}-12=0\)

\(\Leftrightarrow\sqrt{\left[3\left(x-1\right)\right]^2}-12=0\)

\(\Leftrightarrow\left|3\left(x-1\right)\right|-12=0\)

\(\Leftrightarrow3\left(x-1\right)=12\)

\(\Leftrightarrow x-1=4\)

\(\Leftrightarrow x=5\)

vậy x=5

b) \(\sqrt{2-4x}\le3\)( ĐK: \(x\le\frac{1}{2}\))

\(\Leftrightarrow\sqrt{2-4x}\le\sqrt{9}\)

\(\Leftrightarrow2-4x\le9\)

\(\Leftrightarrow4x\ge-7\)

\(\Leftrightarrow x\le-\frac{7}{2}\)( thỏa mãn điều kiện của bài toán)

vậy \(x\le-\frac{7}{2}\)

20 tháng 8 2017

a)\(\sqrt{9-\left(x-1\right)^2-12=0}\)  

\(\Leftrightarrow3\left(x-1\right)=12\)

\(\Leftrightarrow x-1=4\)

\(\Leftrightarrow x=5\)

11 tháng 8 2020

a) ĐKXĐ : \(x\ge-3\)

 \(\sqrt{x+3}\ge5\)

\(\Leftrightarrow x+3\ge25\)

\(\Leftrightarrow x\ge22\)

Kết hợp điều kiện  \(\Rightarrow x\ge22\)

Vậy..................................

9 tháng 8 2021

a, Với \(x\ge0;x\ne1\)

\(B=\frac{1}{\sqrt{x}-1}=2\Rightarrow2\sqrt{x}-2=1\Leftrightarrow2\sqrt{x}-3=0\Leftrightarrow x=\frac{9}{4}\)

b, Ta có : \(A.B=\frac{x+3}{\sqrt{x}+1}.\frac{1}{\sqrt{x}-1}=\frac{x+3}{x-1}=\frac{x-1+4}{x-1}=1+\frac{4}{x-1}\)

\(\Rightarrow x-1\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)

x - 11-12-24-4
x203-15-3

c, Ta có : \(A=\frac{x+3}{\sqrt{x}+1}\le3\Leftrightarrow\frac{x+3}{\sqrt{x}+1}-3\le0\)

\(\Leftrightarrow\frac{x-3\sqrt{x}}{\sqrt{x}+1}\le0\Rightarrow\sqrt{x}-3\le0\Leftrightarrow x\le9\)

Kết hợp với đk vậy 0 =< x =< 9 

14 tháng 7 2017

Đề bài là gì?

15 tháng 7 2017

giải phương trình

20 tháng 7 2019

Bài 2:

a)

\(\sqrt{x-3}+\sqrt{x+2}\)

Biểu thức trên được xác định khi và chỉ khi:

\(\left\{{}\begin{matrix}x-3\ge0\\x+2\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge3\\x\ge-2\end{matrix}\right.\)

b)

\(\sqrt{x+4}-\frac{1}{\sqrt{x-3}}\)

Biểu thức trên được xác định khi và chỉ khi:

\(\left\{{}\begin{matrix}x+4\ge0\\x+3>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge-4\\x>-3\end{matrix}\right.\)

20 tháng 7 2019

Bài 3:

\(\sqrt{x^2-2x+1}\le3\)

\(\Leftrightarrow\sqrt{\left(x-1\right)^2}\le3\)

\(\Leftrightarrow x-1\le3\)

\(\Leftrightarrow x\le4\)

20 tháng 9 2020

a, \(x+3+\sqrt{x^2-6x+9}=x+3+\sqrt{\left(x-3\right)^2}\)

\(=x+3+|x-3|=x+3-x+3=6\)

b, \(\sqrt{x^2+4x+4}-\sqrt{x^2}=\sqrt{\left(x+2\right)^2}-\sqrt{x^2}\)

\(=|x+2|-|x|=x+2+x=2x+2\)

20 tháng 9 2020

Câu 1 b mình nghĩ đề là \(\sqrt{x^2+4x+4}-\sqrt{x^2}\)

Với cả câu 2 chưa đủ hai về thì không phải là phương trình