K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(\Leftrightarrow\left|x+1\right|=-2x-2\)

\(\Leftrightarrow\left[{}\begin{matrix}\left(-2x-2\right)^2-\left(x+1\right)^2=0\\-2x-2>=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3\left(x+1\right)^2=0\\x< =-1\end{matrix}\right.\Leftrightarrow x=-1\)

b: \(\Leftrightarrow\left(x-3\right)^2=1\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=1\\x-3=-1\end{matrix}\right.\Leftrightarrow x\in\left\{4;2\right\}\)

25 tháng 9 2017

a, |x+1| +2x \(=\)-2

\(\Leftrightarrow\) |x+1|\(=\)-2-2x (*)

TH1: Nếu x+1\(\ge0\)\(\Leftrightarrow x\ge-1\)thì \(\left|x+1\right|=x+1\)

Thay vào (*) ta có:

\(x+1=-2-2x\)

\(\Leftrightarrow x+2x=-2-1\)

\(\Leftrightarrow3x=-3\)

\(\Leftrightarrow x=-1\)(TMĐK)

TH2: Nếu \(x+1< 0\Leftrightarrow x< -1\Rightarrow\left|x+1\right|=-\left(x+1\right)\)

Thay vào (*), ta có:

\(-x-1=\)\(-2-2x\)

\(\Leftrightarrow-x+2x=-2+1\)

\(\Leftrightarrow x=-1\)(kTMĐK)

Vậy S\(=\){-1}

b, \(x^2-6x+9=1\)

\(\Leftrightarrow x^2-2.3.x+3^2\)

\(\Leftrightarrow\left(x-3\right)^2=1\)

\(\Leftrightarrow\left(x-3\right)^2-1^2=0\)

\(\Leftrightarrow\left(x-3-1\right)\left(x-3+1\right)=0\)

\(\Leftrightarrow\left(x-4\right)\left(x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-4=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=2\end{matrix}\right.\)

Vậy S\(=\){4;2}

26 tháng 9 2017

a) |x + 1| + 2x = 2

\(\Rightarrow\) |3x + 1| = 2

\(\Rightarrow\) |3x| = 1

\(\Rightarrow\) |x| = 1 : 3 = \(\dfrac{1}{3}\)

\(\Rightarrow\) x = \(\dfrac{1}{3}\) hoặc \(-\dfrac{1}{3}\)

a: \(\Leftrightarrow\left|x+1\right|=-2x-2\)

\(\Leftrightarrow\left\{{}\begin{matrix}x< =-1\\\left(-2x-2\right)^2-\left(x+1\right)^2=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x< =-1\\3\left(x+1\right)^2=0\end{matrix}\right.\Leftrightarrow x=-1\)

b: \(\Leftrightarrow\left(x-3\right)^2=1\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=1\\x-3=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=2\end{matrix}\right.\)

2 tháng 7 2016

2a - (5- 4a) +(6a -1) -(2+a)

= -10a - 8a^2 +6a -1 -2 -a

= -8a^2 -5a -3

5a - 2b +3 - (2a -5b +6) +(a+3b -1)

= 5a -2b +3 -2a+5b -6 +a + 3b -1

= 4a +6b -4

6x(x-1) -1(6x^2 -8x +3) = 7 -(x-1)

6x^2 -6x - 6x^2 + 8x -3 = 7 -x +1

3x = 11

x= 11/3

7x(2x-1) - (14x^2 -8x +5) = 7- (-2x +3)

14x^2 - 7x - 14x^2 + 8x - 5 = 7 + 2x -3

-x = 9

x=-9  

a: =>2x-1=-2

=>2x=-1

hay x=-1/2

b: \(\Leftrightarrow\left[{}\begin{matrix}3x+2=0\\-\dfrac{2}{5}x-7=0\end{matrix}\right.\Leftrightarrow x\in\left\{-\dfrac{2}{3};-\dfrac{35}{2}\right\}\)

c: x/8=9/4

nên x/8=18/8

hay x=18

d: \(\Leftrightarrow\left(x-3\right)^2=36\)

=>x-3=6 hoặc x-3=-6

=>x=9 hoặc x=-3

e: =>-1,7x=6,12

hay x=-3,6

h: =>x-3,4=27,6

hay x=31

22 tháng 2 2022

a) \(\dfrac{1}{3}\div\left(2x-1\right)=\dfrac{-1}{6}\)

\(\left(2x-1\right).\dfrac{1}{3}\div\left(2x-1\right)=\left(2x-1\right)\left(-\dfrac{1}{6}\right)\)

\(\dfrac{1}{3}=\left(2x-1\right)\left(-\dfrac{1}{6}\right)\)

\(\dfrac{1}{3}=-1\left(2x-1\right)\div6\)

\(\dfrac{1}{3}=-2x+1\div6\)

\(x=-\dfrac{1}{2}\)

b) \(\left(3x+2\right)\left(\dfrac{-2}{5}x-7\right)=0\)

\(TH1:3x+2=0\)

\(3x=0-2\)

\(3x=-2\)

\(x=\dfrac{-2}{3}\)

\(TH2:\left(-\dfrac{2}{5}x-7\right)=0\)

\(\left(\dfrac{-2}{5}x-7\right)=0\)

\(\left(\dfrac{-2x}{5}+\dfrac{5\left(-7\right)}{5}\right)=0\)

\(\left(\dfrac{-2x-35}{5}\right)=0\)

\(-2x-35=0\)

\(-2x=0+35\)

\(x=-\dfrac{35}{2}\)

c) \(\dfrac{x}{8}=\dfrac{9}{4}\)

\(\Leftrightarrow x=\dfrac{9.8}{4}=\dfrac{72}{4}=18\)

\(x=18\)

d) \(\dfrac{x-3}{2}=\dfrac{18}{x-3}\)

\(x-3=18+2\)

\(x=20-3\)

\(x=17\)

e) \(4,5x-6,2x=6,12\)

\(\dfrac{9x}{2}-6,2.x=6,12\)

\(\dfrac{9x}{2}+\dfrac{-31x}{5}=6,12\)

\(\dfrac{5.9x}{10}+\dfrac{2\left(-31\right)x}{10}=6.12\)

\(\dfrac{45x-62x}{10}=6.12\)

\(=-17x\div10=6.12\)

\(-17x=10.6.12\)

\(x=-3,6\)

h) \(11,4-\left(x-3,4\right)=-16,2\)

\(x-3,4=-16,2+11,4\)

\(x-3,4=-4,8\)

\(x=-1,4\)

 

10 tháng 3 2022

a)TH1: \(2x-3>0;3x+2>0\)

\(=>2x-3-3x-2=0\\ =>-x-5=0\\ =>-x=5=>x=-5\)

TH2: \(2x-3< 0;3x+2< 0\)

\(=>-2x+3+3x+2=0\\ =>x+5=0\\ =>x=-5\)

Cả 2 TH ra \(x=-5=>x=-5\)

b)TH1 \(\dfrac{1}{2}x>0\)

\(=>\dfrac{1}{2}x=3-2x\\ =>3-2x-\dfrac{1}{2}x=0\\ =>\dfrac{4}{2}x-\dfrac{1}{2}x=3\\ =>\dfrac{3}{2}x=3\\ =>x=2\)

TH2 \(\dfrac{1}{2}x< 0\)

\(=>-\dfrac{1}{2}x=3-2x\\ =>3-2x+\dfrac{1}{2}x=0\\ =>\dfrac{4}{2}x+\dfrac{1}{2}x=3\\ =>\dfrac{5}{2}x=3\\ =>x=\dfrac{6}{5}\)

\(=>x=2;\dfrac{6}{5}\)

:V lập 2 ý là làm đc á em 

\(\left[{}\begin{matrix}2x-\dfrac{2}{3}=\dfrac{1}{3}\\2x-\dfrac{2}{3}=\dfrac{-1}{3}\end{matrix}\right.\left[{}\begin{matrix}2x=1\\2x=\dfrac{1}{3}\end{matrix}\right.\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=\dfrac{1}{6}\end{matrix}\right.\)

a)\(\left[{}\begin{matrix}x+\dfrac{1}{2}=\dfrac{5}{2}\\x+\dfrac{1}{2}=-\dfrac{5}{2}\end{matrix}\right.\left[{}\begin{matrix}x=2\\x=-3\end{matrix}\right.\)