Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Tìm \(n\in N\), biết:
\(3.5^{2n+1}-3.25^n=300\)
b) Tìm x để:
\(f\left(x\right)=6x^{^{ }4}-2x^3+5=5\)
a)\(3\cdot5^{2n+1}-3\cdot25^n=300\)
\(3\cdot5^{2n}\cdot5-3\cdot25^n=300\)
\(15\cdot25^n-3\cdot25^n=300\)
\(25^n\cdot12=300\)
\(25^n=25\)
\(\Rightarrow n=1\)
b)\(f\left(x\right)=6x^4-2x^3+5=5\)
\(6x^4-2x^3=0\)
\(6x^4=2x^3\)
\(3x^4=x^3\)
\(3x^4-x^3=0\)
\(x^3\left(3x-1\right)=0\)
\(\Rightarrow x^3=0\) hoặc 3x-1=0
\(\Rightarrow x=0,3x=1\)
\(\Rightarrow x=0,x=\frac{1}{3}\)(loại vì \(x\in N\))
Vậy x=0
a) \(5^{x+1}-2.5^x=375\)
\(\Rightarrow5^x\left(5-2\right)=375\)
\(\Rightarrow5^x.3=375\)
\(\Rightarrow5^x=125=5^3\)
\(\Rightarrow x=3\)
b) \(9^{x+1}-5.3^{2x}=324\)
\(\Rightarrow3^{2\left(x+1\right)}-5.3^{2x}=324\)
\(\Rightarrow3^2\left(3^{x+1}-5.3^x\right)=324\)
\(\Rightarrow9.3^x\left(3-5\right)=324\)
\(\Rightarrow3^x.\left(-2\right)=36\)
\(\Rightarrow3^x=-18=3^2.\left(-2\right)\)(vô lí vì 3x không chia hết cho 2)
c) \(\left(1-x\right)^5=32=2^5\)
\(\Rightarrow1-x=2\)
\(\Rightarrow x=-1\)
d) \(3.5^{2x+1}-3.25^x=300\)
\(\Rightarrow3\left(5^{2x}.5-5^{2x}\right)=300\)
\(\Rightarrow5^{2x}\left(5-1\right)=100\)
\(\Rightarrow5^{2x}.4=100\)
\(\Rightarrow5^{2x}=25=5^2\)
\(\Rightarrow2x=2\)
\(\Rightarrow x=1\)
1) \(\frac{1}{3}x-\frac{2}{5}=\frac{1}{3}\)
⇒ \(\frac{1}{3}x=\frac{1}{3}+\frac{2}{5}\)
⇒ \(\frac{1}{3}x=\frac{11}{15}\)
⇒ \(x=\frac{11}{15}:\frac{1}{3}\)
⇒ \(x=\frac{11}{5}\)
Vậy \(x=\frac{11}{5}.\)
2) \(2,5:7,5=x:\frac{3}{5}\)
⇒ \(\frac{5}{2}:\frac{15}{2}=x:\frac{3}{5}\)
⇒ \(\frac{1}{3}=x:\frac{3}{5}\)
⇒ \(x=\frac{1}{3}.\frac{3}{5}\)
⇒ \(x=\frac{1}{5}\)
Vậy \(x=\frac{1}{5}.\)
4) \(\left|x\right|+\left|x+2\right|=0\)
Có: \(\left\{{}\begin{matrix}\left|x\right|\ge0\\\left|x+2\right|\ge0\end{matrix}\right.\forall x.\)
⇒ \(\left|x\right|+\left|x+2\right|=0\)
⇒ \(\left\{{}\begin{matrix}x=0\\x+2=0\end{matrix}\right.\) ⇒ \(\left\{{}\begin{matrix}x=0\\x=0-2\end{matrix}\right.\) ⇒ \(\left\{{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)
Vô lí vì \(x\) không thể nhận cùng lúc 2 giá trị khác nhau.
⇒ \(x\in\varnothing\)
Vậy không tồn tại giá trị nào của \(x\) thỏa mãn yêu cầu đề bài.
10) \(5-\left|1-2x\right|=3\)
⇒ \(\left|1-2x\right|=5-3\)
⇒ \(\left|1-2x\right|=2\)
⇒ \(\left[{}\begin{matrix}1-2x=2\\1-2x=-2\end{matrix}\right.\) ⇒ \(\left[{}\begin{matrix}2x=1-2=-1\\2x=1+2=3\end{matrix}\right.\) ⇒ \(\left[{}\begin{matrix}x=\left(-1\right):2\\x=3:2\end{matrix}\right.\)
⇒ \(\left[{}\begin{matrix}x=-\frac{1}{2}\\x=\frac{3}{2}\end{matrix}\right.\)
Vậy \(x\in\left\{-\frac{1}{2};\frac{3}{2}\right\}.\)
Chúc bạn học tốt!
9, \(13\frac{1}{3}:1\frac{1}{3}=26:\left(2x-1\right)\)
\(\frac{40}{3}:\frac{4}{3}=26:\left(2x-1\right)\)
\(10=26:\left(2x-1\right)\)
\(2x-1=26:10\)
\(2x-1=2,6\)
\(2x=2,6+1\)
\(2x=3,6\)
\(x=3,6:2\)
\(x=1,8\)
câu E
\(\left\{{}\begin{matrix}x\ne\dfrac{5}{2}\\\left(2x-5\right)\left(5-2x\right)=-\left(\dfrac{3}{2}\right)^4\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ne\dfrac{5}{2}\\\left|2x-5\right|=\left(\dfrac{3}{2}\right)^2\end{matrix}\right.\)
\(\left[{}\begin{matrix}\left\{{}\begin{matrix}x< \dfrac{5}{2}\\2x-5=-\left(\dfrac{3}{2}\right)^2\Rightarrow x=\dfrac{11}{8}< \dfrac{5}{2}\left(n\right)\end{matrix}\right.\\\left\{{}\begin{matrix}x>\dfrac{5}{2}\\2x-5=\left(\dfrac{3}{2}\right)^2\Rightarrow x=\dfrac{29}{8}>\dfrac{5}{2}\left(n\right)\end{matrix}\right.\end{matrix}\right.\)
câu F (bạn cho vào lớp 7.2=lớp 14 nhé. )