Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải như sau.
(1)+(2)⇔x2−2x+1+√x2−2x+5=y2+√y2+4⇔(x2−2x+5)+√x2−2x+5=y2+4+√y2+4⇔√y2+4=√x2−2x+5⇒x=3y(1)+(2)⇔x2−2x+1+x2−2x+5=y2+y2+4⇔(x2−2x+5)+x2−2x+5=y2+4+y2+4⇔y2+4=x2−2x+5⇒x=3y
⇔√y2+4=√x2−2x+5⇔y2+4=x2−2x+5, chỗ này do hàm số f(x)=t2+tf(x)=t2+t đồng biến ∀t≥0∀t≥0
Công việc còn lại là của bạn !
\(\left(x+6\right)\left(2x+1\right)=0\)
<=> \(\orbr{\begin{cases}x+6=0\\2x+1=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=-6\\x=-\frac{1}{2}\end{cases}}\)
Vậy....
hk tốt
^^
a. 3x(x-2)-x+2=0
3x(x-2)-(x-2)=0
(3x-1)(x-2)=0
=>\(\hept{\begin{cases}3x-1=0\\x-2=0\end{cases}}\)
=> \(\hept{\begin{cases}3x=1\\x=2\end{cases}}\)
=>\(\hept{\begin{cases}x=\frac{1}{3}\\x=2\end{cases}}\)
vậy x thuộc (1/3;2)
a) x(2x-7)-4x+14=0
=>x(2x-7)-2(2x-7)=0
=>(x-2)(2x-7)=0
=>x-2=0 hoặc 2x-7=0
=>x=2 hoặc x=7/2
b, x(x-1)+2x-2=0
=>x(x-1)+2(x-1)=0
=>(x+2)(x-1)=0
=>x+2=0 hoặc x-1=0
=>x=-2 hoặc x=1
c, 2x^3+3x^2+2x+3=0
=>x2(2x+3)+2x+3=0
=>(x2+1)(2x+3)=0
=>x2+1=0 hoặc 2x+3=0
Vì x2+1>0 với mọi x ->vô nghiệm
=>2x+3=0 =>x=-3/2
d, x^3+6x^2+11x+6=0
=>x3+3x3+2x+3x2+3x3+6=0
=>x(x2+3x+2)+3(x2+3x+2)=0
=>(x2+3x+2)(x+3)=0
=>[x2+x+2x+2](x+3)=0
=>[x(x+1)+2(x+1)](x+3)=0
=>(x+1)(x+2)(x+3)=0
=>x+1=0 hoặc x+2=0 hoặc x+3=0
=>x=-1 hoặc x=-2 hoặc x=-3a) x(2x-7)-4x+14=0
=>x(2x-7)-2(2x-7)=0
=>(x-2)(2x-7)=0
=>x-2=0 hoặc 2x-7=0
=>x=2 hoặc x=7/2
b, x(x-1)+2x-2=0
=>x(x-1)+2(x-1)=0
=>(x+2)(x-1)=0
=>x+2=0 hoặc x-1=0
=>x=-2 hoặc x=1
c, 2x^3+3x^2+2x+3=0
=>x2(2x+3)+2x+3=0
=>(x2+1)(2x+3)=0
=>x2+1=0 hoặc 2x+3=0
Vì x2+1>0 với mọi x ->vô nghiệm
=>2x+3=0 =>x=-3/2
d, x^3+6x^2+11x+6=0
=>x3+3x3+2x+3x2+3x3+6=0
=>x(x2+3x+2)+3(x2+3x+2)=0
=>(x2+3x+2)(x+3)=0
=>[x2+x+2x+2](x+3)=0
=>[x(x+1)+2(x+1)](x+3)=0
=>(x+1)(x+2)(x+3)=0
=>x+1=0 hoặc x+2=0 hoặc x+3=0
=>x=-1 hoặc x=-2 hoặc x=-3
1. a . 3x2 - 6x = 0
\(\Leftrightarrow3x\left(x-2\right)=0\Leftrightarrow\orbr{\begin{cases}3x=0\\x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}\)
b. x3 - 13x = 0
\(\Leftrightarrow x\left(x^2-13\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x^2-13=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\pm\sqrt{13}\end{cases}}\)
c. 5x ( x - 2001 ) - x + 2001 = 0
<=> 5x ( x - 2001 ) - ( x - 2001 ) = 0
\(\Leftrightarrow\left(5x-1\right)\left(x-2001\right)=0\Leftrightarrow\orbr{\begin{cases}5x-1=0\\x-2001=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{5}\\x=2001\end{cases}}\)
a) 3x(4x - 3) - 2x(5 - 6x) = 0
=> 6x2 - 9x - 10x + 12x2 = 0
=> 18x2 - 19x = 0
=> x(18x - 19) = 0
=> \(\orbr{\begin{cases}x=0\\18x-19=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=0\\x=\frac{19}{18}\end{cases}}\)
b) 5(2x - 3) + 4x(x - 2) + 2x(3 - 2x) = 0
=> 10x - 15 + 4x2 - 8x + 6x - 4x2 = 0
=> 8x - 15 = 0
=> 8x = 15
=> x = 15 : 8 = 15/8
c) 3x(2 - x) + 2x(x - 1) = 5x(x + 3)
=> 6x - 3x2 + 2x2 - 2x = 5x2 + 15x
=> 4x - x2 - 5x2 - 15x = 0
=> -6x2 - 11x = 0
=> -x(6x - 11) = 0
=> \(\orbr{\begin{cases}-x=0\\6x-11=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=0\\x=\frac{11}{6}\end{cases}}\)
a) \(3x\left(4x-3\right)-2x\left(5-6x\right)=0\)
\(\Leftrightarrow12x^2-9x-10x+12x^2=0\)
\(\Leftrightarrow-19x=0\Leftrightarrow x=0\)
b) \(5\left(2x-3\right)+4x\left(x-2\right)+2x\left(3-2x\right)=0\)
\(\Leftrightarrow10x-15+4x^2-8x+6x-4x^2=0\)
\(\Leftrightarrow8x-15=0\Leftrightarrow x=\frac{15}{8}\)
a) Ta có: 3x(4x-3)-2x(5-6x)=0
\(\Leftrightarrow12x^2-9x-10x+12x^2=0\)
\(\Leftrightarrow24x^2-19x=0\)
\(\Leftrightarrow x\left(24x-19\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\24x-19=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\24x=19\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\frac{19}{24}\end{matrix}\right.\)
Vậy: \(x\in\left\{0;\frac{19}{24}\right\}\)
b) Ta có: \(5\left(2x-3\right)+4x\left(x-2\right)+2x\left(3-2x\right)=0\)
\(\Leftrightarrow10x-15+4x^2-8x+6x-4x^2=0\)
\(\Leftrightarrow8x-15=0\)
\(\Leftrightarrow8x=15\)
hay \(x=\frac{15}{8}\)
Vậy: \(x=\frac{15}{8}\)
c) Ta có: \(3x\left(2-x\right)+2x\left(x-1\right)=5x\left(x+3\right)\)
\(\Leftrightarrow6x-3x^2+2x^2-2x=5x^2+15x\)
\(\Leftrightarrow-x^2+4x-5x^2-15x=0\)
\(\Leftrightarrow-6x^2-11x=0\)
\(\Leftrightarrow6x^2+11x=0\)
\(\Leftrightarrow x\left(6x+11\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\6x+11=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\6x=-11\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\frac{-11}{6}\end{matrix}\right.\)
Vậy: \(x\in\left\{0;\frac{-11}{6}\right\}\)
d) Ta có: \(3x\left(x+1\right)-5x\left(3-x\right)+6\left(x^2+2x+3\right)=0\)
\(\Leftrightarrow3x^2+3x-15x+5x^2+6x^2+12x+18=0\)
\(\Leftrightarrow14x^2+18=0\)
\(\Leftrightarrow14x^2=-18\)
mà \(14x^2\ge0\forall x\)
nên \(x\in\varnothing\)
Vậy: \(x\in\varnothing\)
\(a,\Leftrightarrow\dfrac{3x^3+6x^2-3x-5x^2-10x+5}{x^2+2x-1}=10\\ \Leftrightarrow\dfrac{3x\left(x^2+2x-1\right)-5\left(x^2+2x-1\right)}{x^2+2x-1}=10\\ \Leftrightarrow3x-5=10\Leftrightarrow3x=15\Leftrightarrow x=5\\ b,\Leftrightarrow\left(x^4+2x^2-4x^2-8\right):\left(x-2\right)=0\\ \Leftrightarrow\left[\left(x^2-4\right)\left(x^2+2\right)\right]:\left(x-2\right)=0\\ \Leftrightarrow\left[\left(x-2\right)\left(x+2\right)\left(x^2+2\right)\right]:\left(x-2\right)=0\\ \Leftrightarrow\left(x+2\right)\left(x^2+2\right)=0\Leftrightarrow x=-2\left(x^2+2>0\right)\\ c,\Leftrightarrow\dfrac{x\left(x-4\right)}{\left(x-4\right)^2}=0\Leftrightarrow\dfrac{x}{x-4}=0\Leftrightarrow x=0\)
a.\(3x^2-4x+1=0\Leftrightarrow3x^2-3x-x+1=0\Leftrightarrow\left(3x-1\right)\left(x-1\right)=0\Leftrightarrow\orbr{\begin{cases}x=1\\x=\frac{1}{3}\end{cases}}\)
b.\(x\left(2x^2-4x+3x-6\right)=0\Leftrightarrow x\left(2x+3\right)\left(x-2\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}\text{ hoặc }x=-\frac{3}{2}\)
c.\(2x^3-x^2-13x-6=0\Leftrightarrow\left(x+2\right)\left(2x+1\right)\left(x-3\right)=0\Leftrightarrow\orbr{\begin{cases}x=-2\\x=-\frac{1}{2}\end{cases}\text{ hoặc }x=3}\)
\(a,3x^2-4x+1=0\)
\(\Leftrightarrow3x^2-3x-x+1=0\)
\(\Leftrightarrow3x\left(x-1\right)-\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(3x-1\right)=0\)
Trường hợp 1: \(x-1=0\Leftrightarrow x=1\)
Trường hợp 2: \(3x-1=0\Leftrightarrow x=\frac{1}{3}\)
Vậy: \(S=\left\{1;\frac{1}{3}\right\}\)
\(b,2x^3-x^2-6x=0\)
\(\Leftrightarrow x\left(2x^2-x-6\right)=0\)
\(\Leftrightarrow x\left(2x^2-4x+3x-6\right)=0\)
\(\Leftrightarrow x\left[2x\left(x-2\right)+3\left(x-2\right)\right]=0\)
\(\Leftrightarrow x\left(x-2\right)\left(x+3\right)=0\)
Trường hợp 1: \(x=0\)
Trường hợp 2: \(x-2=0\Leftrightarrow x=2\)
Trường hợp 3: \(x+3=0\Leftrightarrow x=-3\)
Vậy: \(S=\left\{0;2;-3\right\}\)
\(c,2x^3-x^2-13x-6=0\)
\(\Leftrightarrow2x^3-5x^2-6x^2+2x-15x-6=0\)
\(\Leftrightarrow\left(2x^3+5x^2+2x\right)-\left(6x^2+15x+6\right)=0\)
\(\Leftrightarrow x\left(2x^2+5x+2\right)-3\left(2x^2+5x+2\right)=0\)
\(\Leftrightarrow\left(2x^2+5x+2\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left(2x^2+4x+x+2\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left[2x\left(x+2\right)+\left(x+2\right)\right]\left(x-3\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(2x+1\right)\left(x-3\right)=0\)
Trường hợp 1: \(x+2=0\Leftrightarrow x=-2\)
Trường hợp 2: \(2x+1=0\Leftrightarrow x=-\frac{1}{2}\)
Trường hợp 3: \(x-3=0\Leftrightarrow x=3\)
Vậy: \(S=\left\{-2;-\frac{1}{2};3\right\}\)