Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(5^X+5^{X+1}=750\\ 5^X\cdot\left(1+5\right)=750\\ 5^X\cdot6=750\\ 5^X=125\\X=3 \)
\(5^{x+2}+5^{x+3}=750\)
\(5^x.5^2+5^x.5^3=750\)
\(5^x.25+5^x\cdot125=750\)
\(5^x.\left(25+125\right)=750\)
\(5^x.150=750\)
\(5^x=750:150\)
\(5^x=5\)
\(5^x=5^1\)
\(\Rightarrow x=1\)
1: Tìm x
a) Ta có: \(\left(2x-1\right)^3=-27\)
\(\Leftrightarrow2x-1=-3\)
\(\Leftrightarrow2x=-3+1=-2\)
hay x=-1
Vậy: x=-1
b) Ta có: \(\left(2x-3\right)^4=625\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-3=-5\\2x-3=5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=-5+3=-2\\2x=5+3=8\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=4\end{matrix}\right.\)
Vậy: \(x\in\left\{-1;4\right\}\)
c) Ta có: \(\left(x-2\right)^5=\left(x-2\right)^7\)
\(\Leftrightarrow\left(x-2\right)^5-\left(x-2\right)^7=0\)
\(\Leftrightarrow\left(x-2\right)^5\left[1-\left(x-2\right)^2\right]=0\)
\(\Leftrightarrow\left(x-2\right)^5\cdot\left[1-\left(x-2\right)\right]\cdot\left[1+\left(x-2\right)\right]=0\)
\(\Leftrightarrow\left(x-2\right)^5\cdot\left(1-x+2\right)\cdot\left(1+x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)^5\cdot\left(-x+3\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left(x-2\right)^5=0\\-x+3=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x-2=0\\-x=-3\\x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=3\\x=1\end{matrix}\right.\)
Vậy: \(x\in\left\{1;2;3\right\}\)
d) Ta có: \(5^{x+2}+5^{x+3}=750\)
\(\Leftrightarrow5^{x+2}\cdot1+5^{x+2}\cdot5=750\)
\(\Leftrightarrow5^{x+2}\left(1+5\right)=750\)
\(\Leftrightarrow5^{x+2}\cdot6=750\)
\(\Leftrightarrow5^{x+2}=125\)
\(\Leftrightarrow x+2=3\)
hay x=1
Vậy: x=1
a, \(5^x+5^{x+1}+5^{x-2}=151\)
\(\Rightarrow5^x.\left(1+5+5^{-2}\right)=151\)
\(\Rightarrow5^x.6,04=151\Rightarrow5^x=25=5^2\)
Vì \(5\ne-1;5\ne0;5\ne1\) nên \(x=2\)
b, \(5^{x-1}+5^{x-2}+5^{x-3}=155\)
\(\Rightarrow5^x.\left(5^{-1}+5^{-2}+5^{-3}\right)=155\)
\(\Rightarrow5^x.0,248=155\Rightarrow5^x=625=5^4\)
Vì \(5\ne-1;5\ne0;5\ne1\) nên \(x=4\)
c, \(5^{2+x}+5^{3+x}=750\) \(\Rightarrow5^x.\left(5^2+5^3\right)=750\) \(\Rightarrow5^x.150=750\Rightarrow5^x=5=5^1\) Vì \(5\ne-1;5\ne0;5\ne1\) nên \(x=1\) Chúc bạn học tốt!!!\(•5^x+5^{x+1}+5^{x-2}=151\\ 5^x\left(1+5+\dfrac{1}{25}\right)=151\\ 5^x=25\\ \Rightarrow x=2\)
\(•5^{x-1}+5^{x-2}+5^{x-3}=155\\ 5^x.\left(\dfrac{1}{5}+\dfrac{1}{25}+\dfrac{1}{125}\right)=155\\ 5^x=625\\ \Rightarrow x=4\)
\(•5^{2+x}+5^{3+x}=750\\ 5^x\left(25+125\right)=750\\ 5^x=5\\ \Rightarrow x=1\)
5x + 1 + 5x + 2 = 750
=> 5x + 1(1 + 5) = 750
=> 5x + 1 = 750 : 6
=> 5x + 1 = 125
=> 5x + 1 = 52
=> x + 1 = 2
=> x = 1
a) \(5^{x+2}\)+ \(5^{x+3}\)=625
\(5^x\). \(2^x\)+ \(5^x\) . \(3^x\)=625
\(5^x\). (\(2^x\)+ \(3^x\) ) =625
\(5^x\). \(5^x\) =625
\(25^x\) =625
\(25^x\)= \(25^2\)
vậy x=2
hình như câu a bn ghi nhầm 625 thành 750
\(5^{x+1}+5^{x+2}=750\)
\(5^x.5+5^x.5^2=750\)
\(5^x.5+5^x.25=750\)
\(5^x.\left(5+25\right)=750\)
\(5^x.30=750\)
\(5^x=750:30\)
\(5^x=25\)
\(5^x=5^2\)
\(\Rightarrow x=2\)
\(5^x+5^{x+1}=750\)
\(5^x=750\)
\(5^x.6=750\)
\(5^x=750:6\)
\(5^x=125\)
\(5^x=5^3\)
\(\Rightarrow x=3\)
5^x + 5^x+1 = 750
<=> 5^x + 5^x . 5 = 750
<=> 5^x.(1+5) = 750
<=> 5^x . 6 = 750
<=> 5^x = 750 : 6 = 125 = 5^3
=> x = 3
\(5^{x+1}+5^{x+2}=750\)
\(\Leftrightarrow5^x.5^1+5^x.5^2=750\)
\(\Leftrightarrow5^x.5+5^x.25=750\)
\(\Leftrightarrow5^x.\left(5+25\right)=750\)
\(\Leftrightarrow5^x.30=750\)
\(\Leftrightarrow5^x=750:30\)
\(\Leftrightarrow5^x=25\)
\(\Leftrightarrow5^x=5^2\)
\(\Rightarrow x=2\)
5x + 1 + 5x + 2 = 750
=> 5x . 5 + 5x . 52 = 750
=> 5x . (5 + 52) = 750
=> 5x . (5 + 25) = 750
=> 5x . 30 = 750
=> 5x = 750 : 30
=> 5x = 25
=> 5x = 52
=> x = 2
Vậy x = 2
\(5^{x+1}+5^{x+2}=750\)
\(\Rightarrow5^{x+1}\left(1+5\right)=750\)
\(\Rightarrow5^{x+1}.6=750\Rightarrow5^{x+1}=125\)
\(\Rightarrow5^{x+1}=5^3\)
\(\Rightarrow x+1=3\Rightarrow x=2\)
\(5^{x+1}+5^{x+2}=750\)
\(\Rightarrow5^x.5+5^x.5^2=750\)
\(\Rightarrow5^x.5+5^x.25=750\)
\(\Rightarrow5^x\left(5+25\right)=750\)
\(\Rightarrow5^x.30=750\)
\(\Rightarrow5^x=25\)
\(\Rightarrow x=2\)