Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x-3}{x+5}=\frac{5}{7}\)
=> 7 ( x - 3 ) = 5 ( x + 5 )
7x - 21 = 5x + 25
7x - 5x = 25 + 21
2x = 46
x = 23
\(\frac{x}{7}=\frac{y}{5}\Rightarrow\frac{x^2}{7}=\frac{xy}{5}=\frac{40}{5}=8\)
\(\Rightarrow x^2=56\)
\(\Rightarrow x=\sqrt{56}=2\sqrt{14}\Rightarrow y=2\sqrt{14}:7\times5=\frac{10\sqrt{14}}{7}\)
Vậy \(\left(x,y\right)=\left(2\sqrt{14},\frac{10\sqrt{14}}{7}\right)\)
Bạn ơi sai đề bài rồi nhé
Bạn coi lại đề bài đi nhé
Dù là làm phép thử cũng ko đúng nữa
a) \(\frac{2}{3a}-\frac{3}{a}=\frac{2}{3a}-\frac{9}{3a}=\frac{-7}{3a}=\frac{7}{15}\Leftrightarrow-3a=15\Leftrightarrow a=-5\)
b)\(2x^3-1=15\Leftrightarrow2x^3=16\Leftrightarrow x^3=8\Leftrightarrow x=2\)
\(\Rightarrow\frac{2+16}{9}=\frac{y-15}{16}=2\Leftrightarrow y-15=32\Leftrightarrow y=47\)
c) \(\left|x\right|=3\Rightarrow\orbr{\begin{cases}x=-3\\x=3\end{cases}}\) rồi xét 2 trường hợp để tính A nhé :)
Bài 1: ĐK của a: \(a\ne0\)
Quy đồng VT ta có: \(\frac{2a-9a}{3a^2}=\frac{7}{15}\)
\(\Leftrightarrow\frac{-7a}{3a^2}=\frac{7}{15}\)
\(\Leftrightarrow-7a.15=3a^2.7\)
\(\Leftrightarrow-105a=21a^2\)
\(\Leftrightarrow-105a-21a^2=0\)
\(\Leftrightarrow a\left(-105-21a\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}a=0\left(l\right)\\-105-21a=0\end{cases}\Leftrightarrow a=-5\left(n\right)}\)
Vậy:..
a ) \(\frac{x}{6}+\frac{x}{4}=\frac{5}{7}\)
\(\Leftrightarrow x\left(\frac{1}{6}+\frac{1}{4}\right)=\frac{5}{7}\)
\(\Leftrightarrow\frac{5}{12}x=\frac{5}{7}\)
\(\Rightarrow x=\frac{5}{7}:\frac{5}{12}\)
\(\Rightarrow x=\frac{12}{7}\)
b ) Nếu \(xy=5\) thì :
\(M=x^2y-xy^2-xy.x+xy.y-12\)
\(=x^2y-xy^2-x^2y+xy^2-12\)
\(=\left(xy^2-x^2y\right)+\left(-xy^2+xy^2\right)-12\)
\(=-12\)
Tất cả sai hết! (kể cả boul,nếu thay x=-2 vào sẽ thấy vô lí).Không có đk xác định với đk bình phương sao làm được:
Lời giải
ĐKXĐ: \(7-x\ge0\Leftrightarrow x\le7\) (1)
Do \(VT\ge0\Rightarrow x-1\ge0\Leftrightarrow x\ge1\) (2)
Từ (1) và (2) suy ra \(1\le x\le7\)
Bình phương hai vế,ta có: \(\left(x-1\right)^2=7-x\Leftrightarrow x^2-2x+1=7-x\)
\(\Leftrightarrow x^2-x-6=0\Leftrightarrow\left(x-3\right)\left(x+2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=3\\x=-2\left(L\right)\end{cases}}\)
Vậy \(x=3\)
7 -x = x2-1
x2+ x - 8 = 0
x2+ 2x + 1 -9 =0
(x+ 1)2= 9
\(\orbr{\begin{cases}x+1=3\\x+1=-3\end{cases}}\)
Bài 1: Tìm x, y, z
\(\frac{x}{3}=\frac{y}{4}=>\frac{x}{3\times3}=\frac{y}{4\times3}=>\frac{x}{9}=\frac{y}{12}\)
\(\frac{y}{3}=\frac{z}{5}=>\frac{y}{3.4}=\frac{z}{5.4}=>\frac{y}{12}=\frac{z}{20}\)
=> \(\frac{x}{9}=\frac{y}{12}=\frac{z}{20}\)
- Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{9}=\frac{y}{12}=\frac{z}{20}\) -> \(\frac{2x}{2\times9}=\frac{3y}{3\times12}=\frac{z}{20}\) -> \(\frac{2x}{18}=\frac{3y}{36}=\frac{z}{20}\)
-> \(\frac{2x-3y+z}{18-36+20}=\frac{6}{2}=3\)
\(\frac{x}{9}=3\rightarrow x=27\)
\(\frac{y}{12}=3\rightarrow y=36\)
\(\frac{z}{20}=3\rightarrow z=60\)
Vậy x = 27 ; y = 36 ; z = 60
Bài 2 : Tìm x, y:
5x = 2y và x.y = 40
Vì 5x = 2y => \(\frac{x}{2}=\frac{y}{5}\)
Cách 1:
\(\frac{x}{2}=\frac{y}{5}\) và x.y = 40
Đặt \(\frac{x}{2}=\frac{y}{5}\) = k
=> x = 2.k ; y = 5.k
x.y = 40 -> 2k = 5k = 40
-> 10 . \(k^2\) = 40
-> \(k^2\) = 4 -> k = 2 hoặc k = -2
k = 4 ta có : \(\frac{x}{2}=\frac{y}{5}=2->x=4;y=10\)
k = -4 ta có : \(\frac{x}{2}=\frac{y}{5}=-2->x=-4;y=-10\)
Cách 2:
\(\frac{x}{2}=\frac{y}{5}->\frac{x.x}{2}=\frac{x.y}{5}->\frac{x^2}{2}=\frac{40}{5}=\frac{x^2}{2}=8\)
=> \(x^2\) = 8 . 2 = 16 -> x = 4 hoặc -4
x = 4 -> 4.y = 40 => y = 10
x = -4 -> (-4).y = 40 => y = -10
Vậy x = 4 hoặc -4
y = 10 hoặc -10
\(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{9}=\frac{y}{12}\left(1\right)\\\frac{y}{3}=\frac{z}{5}\Rightarrow\frac{y}{12}=\frac{z}{15}\left(2\right)\)
Từ (1),(2) suy ra \(\frac{x}{9}=\frac{y}{12}=\frac{z}{15}\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{x}{9}=\frac{y}{12}=\frac{z}{15}=\frac{2x}{18}=\frac{-3y}{-36}=\frac{z}{15}=\frac{2x-3y+z}{18-\left(-36\right)+15}=\frac{6}{69}=\frac{2}{23}\)Suy ra x =\(\frac{2}{23}\cdot9=\frac{18}{23}\)
\(y=\frac{2}{23}\cdot12=\frac{24}{23}\\ z=\frac{2}{23}.15=\frac{30}{23}\)
\(\text{Áp dụng tính chất dãy tỉ số bằng nhau ta có :}\)
\(\Rightarrow\frac{40x-20y}{5}=\frac{10z-40x}{7}=\frac{20y-10z}{9}=\frac{40x-20y+10z-40x+20y-10z}{5+7+9}=0\)
\(\Rightarrow40x=20y\left(1\right);\)
\(20y=10z\left(2\right)\)
Từ (1) và (2)
\(\Rightarrow40x=20y=10z\)
\(\Rightarrow\hept{\begin{cases}40x=20y\\20y=10z\end{cases}\Rightarrow\hept{\begin{cases}\frac{x}{20}=\frac{y}{40}\\\frac{y}{10}=\frac{z}{20}\end{cases}\Rightarrow}\hept{\begin{cases}\frac{x}{20}=\frac{y}{40}\\\frac{y}{40}=\frac{z}{80}\end{cases}}\Rightarrow\frac{x}{20}=\frac{y}{40}=\frac{z}{80}\Rightarrow\frac{2x}{40}=\frac{3y}{120}=\frac{4z}{320}}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{20}=\frac{y}{40}=\frac{z}{80}=\frac{2x}{40}=\frac{3y}{120}=\frac{4z}{320}=\frac{2x+3y+4z}{40+120+320}=\frac{48}{480}=\frac{1}{10}\)
\(\Rightarrow10x=20\Rightarrow x=2;\)
\(10y=40\Rightarrow y=4;\)
\(10z=80\Rightarrow z=8\)
Vậy x = 2 ; y = 4 ; z = 8
a, \(\left|2x-\frac{3}{5}\right|+7=9\)
=> \(\left|2x-\frac{3}{5}\right|=2\) => \(\orbr{\begin{cases}2x-\frac{3}{5}=2\\2x-\frac{3}{5}=-2\end{cases}}\)
=> \(\orbr{\begin{cases}x=\frac{13}{10}\\x=-\frac{7}{10}\end{cases}}\)
b, \(\left|5-3x\right|-1=\frac{1}{2}\) <=> \(\left|5-3x\right|=\frac{3}{2}\)
=> \(\orbr{\begin{cases}5-3x=\frac{3}{2}\\5-3x=-\frac{3}{2}\end{cases}=>\orbr{\begin{cases}x=\frac{7}{6}\\x=\frac{13}{6}\end{cases}}}\)
a.[2x-3/5]=9-7
[2x-3/5]=2 \(\hept{\begin{cases}2x=\frac{13}{5}\\2x=-\frac{7}{5}\end{cases}}\) \(\hept{\begin{cases}x=\frac{13}{10}\\x=\frac{7}{10}\end{cases}}\)
\(\hept{\begin{cases}2x-\frac{3}{5}=2\\2x-\frac{3}{5}=-2\end{cases}}\)
[5-3x]-1=1/2
[5-3x]=1/2
\(\hept{\begin{cases}5-3x=\frac{1}{2}\\5-3x=-\frac{1}{2}\end{cases}}\)
\(\hept{\begin{cases}3x=\frac{9}{2}\\3x=\frac{11}{2}\end{cases}}\)
\(\hept{\begin{cases}x=\frac{3}{2}\\x=\frac{11}{6}\end{cases}}\)
đó chỉ cần vậy là xong
1) \(\left|2x+5\right|\ge21\Rightarrow2x+5\ge21\)hoặc \(2x+5<-21\)<=> \(x\ge8\) hoặc \(x<-13\)
2)
a) |2x-3|>=0 => A>=0-5=-5 => Min A=-5 <=> x=3/2
b) \(\left|2x-1\right|+\left|3-2x\right|\ge\left|2x-1+3-2x\right|=\left|2\right|=2\Rightarrow B\ge2+5=7\)=> MinB=7 <=>x=1
3)
\(\left|2x-1\right|\ge0\Rightarrow-\left|2x-1\right|\le0\Leftrightarrow A\le0+7=7\Rightarrow MaxA=7\Leftrightarrow x=-\frac{1}{2}\)
b)
th1: nếu x<-3/2 => B=-2x-3+2x+2=-1
th2: nếu \(-\frac{3}{2}\le x\le-1\)=> B=2x+3+2x+2=4x+5
ta có:\(-\frac{3}{2}\le x\le-1\Rightarrow-6\le4x\le-4\Leftrightarrow-1\le4x+5\le1\Rightarrow-1\le B\le1\)
th3: nếu x>-1 => B=2x+3-2x-2=1=>
Max B=1 <=> x>-1 hoặc \(-\frac{3}{2}\le x\le-1\)
2b) Áp dụng bất đẳng thức giá trị tuyệt đối: |a| + |b| \(\ge\) |a + b|. Dấu "=" xảy ra khi tích a.b \(\ge\) 0
Ta có: B = |2x - 1| + |3 - 2x| + 5 \(\ge\) |2x - 1+3 - 2x| + 5 = |2| + 5 = 7
=> Min B = 7 khi
(2x - 1)( 3 - 2x) \(\ge\) 0 => (2x - 1)(2x - 3) \(\le\) 0
Mà 2x - 1 > 2x - 3 nên 2x - 1 \(\ge\) 0 và 2x - 3 \(\le\) 0
=> x \(\ge\) 1/2 và x \(\le\) 3/2
x > hoặc = 12 ( nếu là STN)
x = -1 ; -2 ; ..........................( nếu là thuộc số nguyên âm )