Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a; \(\dfrac{2}{3}\)\(x\) - \(\dfrac{3}{2}\)\(x\) = \(\dfrac{5}{12}\)
(\(\dfrac{2}{3}\) - \(\dfrac{3}{2}\))\(x\) = \(\dfrac{5}{12}\)
- \(\dfrac{5}{6}\)\(x\) = \(\dfrac{5}{12}\)
\(x\) = \(\dfrac{5}{12}\) : (- \(\dfrac{5}{6}\))
\(x=\) - \(\dfrac{1}{2}\)
Vậy \(x=-\dfrac{1}{2}\)
b; \(\dfrac{2}{5}\) + \(\dfrac{3}{5}\).(3\(x\) - 3,7) = \(\dfrac{-53}{10}\)
\(\dfrac{3}{5}\).(3\(x\) - 3,7) = \(\dfrac{-53}{10}\) - \(\dfrac{2}{5}\)
\(\dfrac{3}{5}\).(3\(x\) - 3,7) = - \(\dfrac{57}{10}\)
3\(x\) - 3,7 = - \(\dfrac{57}{10}\) : \(\dfrac{3}{5}\)
3\(x\) - 3,7 = - \(\dfrac{19}{2}\)
3\(x\) = - \(\dfrac{19}{2}\) + 3,7
3\(x\) = - \(\dfrac{29}{5}\)
\(x\) = - \(\dfrac{29}{5}\) : 3
\(x\) = - \(\dfrac{29}{15}\)
Vậy \(x\) \(\in\) - \(\dfrac{29}{15}\)
bạn đã kiểm tra kĩ chưa vậy?mình đọc đề câu B mà loạn não luôn á;-;
Ta có : \(\left|5x-4\right|=\left|x+2\right|\)
\(\Leftrightarrow\orbr{\begin{cases}5x-4=x+2\\5x-4=-x-2\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}5x-x=2+4\\5x+x=-2+4\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}4x=6\\6x=2\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{3}{2}\\x=\frac{1}{3}\end{cases}}\)
b) \(\left|2x-3\right|-\left|3x+2\right|=0\)
\(\Rightarrow\orbr{\begin{cases}2x-3=3x+2\\2x-3=-3x-2\end{cases}\Rightarrow\orbr{\begin{cases}2x-3x=2+3\\2x+3x=-2+3\end{cases}\Rightarrow}\orbr{\begin{cases}-x=5\\5x=1\end{cases}\Rightarrow}\orbr{\begin{cases}x=-5\\x=\frac{1}{5}\end{cases}}}\)
c)/2+3x/=/4x-3/
\(\Rightarrow\orbr{\begin{cases}2+3x=4x-3\\2+3x=-\left(4x-3\right)\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}3x-4x=-3-2\\3x+4x=3-2\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}-x=-5\\7x=1\end{cases}\Rightarrow\orbr{\begin{cases}x=5\\x=\frac{1}{7}\end{cases}}}\)
d)/7x+1/-/5x+6|=0
\(\Rightarrow\left|7x+1\right|=\left|5x+6\right|\)
\(\Rightarrow\orbr{\begin{cases}7x+1=5x+6\\7x+1=-\left(5x+6\right)\end{cases}\Rightarrow\orbr{\begin{cases}7x-5x=6-1\\7x+1=-5x-6\end{cases}\Rightarrow}\orbr{\begin{cases}2x=5\\7x+5x=-6-1\end{cases}\Rightarrow}\orbr{\begin{cases}x=\frac{5}{2}\\x=-\frac{7}{12}\end{cases}}}\)
a)|1/2x|=3-2x
\(\frac{\left|x\right|}{2}=-\left(2x-3\right)\)
\(x=\frac{6}{5}\)
\(\left(-3x+2\right)-\left(5-3x\right)=-3\)
\(\Rightarrow-3x+2-5+3x=-3\)
\(\Rightarrow-3x+3x=-3+5-2\)
\(\Rightarrow0x=0\Rightarrow x\in Z\)
\(3+x-\left(3x-1\right)=6-2x\)
\(\Rightarrow3+x-3x+1=6-2x\)
\(\Rightarrow x-3x+2x=6-1-3\)
\(\Rightarrow0x=2\left(loại\right)\)
\(\left(x-5\right)\left(3x+4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-5=0\\3x+4=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=5\\x=-\frac{4}{3}\end{cases}}}\)
\(7x\left(2x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}7x=0\\2x-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{1}{2}\end{cases}}}\)
\(\left(3x-1\right)2x=0\)
\(\Leftrightarrow\orbr{\begin{cases}3x-1=0\\2x=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{3}\\x=0\end{cases}}}\)
(4x-12)(x3+64)=0
=> [x3+64=0=>x=4x-12=0=>4x=12=>x=3 olm bị lỗi nên em đừng có viết cách ra 1 quãng như kia nhé !
vậy x thuộc {3;4}
(3x-12)(x2-4)=0
=>[x2-4=0=>x2=4=>x=2 hoặc x=-23x-12=0=>3x=12=>x=4
vậy x thuộc {4;2;-2}
(x+3)3:3-1=-10
(x+3)3:3=-9
(x+3)3=-9.3
=>(x+3)3=-27
=>x+3=-3
=>x=-6
(3x-1)3-2=-66
(3x-1)3=-64
(3x-1)3=-43
=>3x-1=-4
=>3x=-3
=>x=-1
\(\left(4x-12\right)\left(x^3+64\right)=0\)
\(\Leftrightarrow4x-12=0\)
\(\Leftrightarrow4x=0+12\)
\(\Leftrightarrow4x=12\)
\(\Leftrightarrow x=12\div4\)
\(\Leftrightarrow x=3\)
\(\Leftrightarrow x^3+64=0\)
\(\Leftrightarrow x^3=0=64\)
\(\Leftrightarrow x^3=\left(-64\right)\)
\(\Leftrightarrow x^3=\left(-4\right)^3\)
\(\Leftrightarrow x=\left(-4\right)\)
\(\Rightarrow x\in\left\{-4;3\right\}\)
\(\Leftrightarrow\left(3x-12\right)\left(x^2-4\right)=0\)
\(\Leftrightarrow3x-12=0\)
\(\Leftrightarrow3x=0+12\)
\(\Leftrightarrow3x=12\)
\(\Leftrightarrow x=12\div3\)
\(x=4\)
\(\Leftrightarrow x^2-4=0\)
\(\Leftrightarrow x^2=0+4\)
\(\Leftrightarrow x^2=4\)
\(\Leftrightarrow x^2=2^2=\left(-2\right)^2\)
\(\Rightarrow x\in\left\{2;-2\right\}\)
\(\Rightarrow x\in\left\{-2;2;4\right\}\)
Các câu khác tương tự nhé !