![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(f\left(x\right)=4x^3-2x^2+5x+1-4x^3+3x^2-4x-1\)
\(f\left(x\right)=x^2+x\)
b) Bạn tự làm nhé
c) Ta có \(f\left(x\right)=0\Leftrightarrow x^2+x=0\)
\(x\left(x+1\right)=0\)
\(\Rightarrow x=0\) hoặc \(x+1=0\Leftrightarrow x=-1\)
Vậy \(x\in\left\{0;-1\right\}\)
a) Ta có: (4x3 - 2x2 + 5x + 1) - f(x) = 4x3 - 3x2 + 4x + 1
=> f(x) = (4x3 - 2x2 + 5x + 1) - (4x3 - 3x2 + 4x + 1)
=> f(x) = 4x3 - 2x2 + 5x + 1 - 4x3 + 3x2 - 4x - 1
=> f(x) = (4x3 - 4x3) - (2x2 - 3x2) + (5x - 4x) + (1 - 1)
=> f(x) = x2 + x
b) Bậc của f(x) : 2
Hệ số cao nhất là : 1
c) Ta có : f(x) = 0
=> x2 + x = 0
=> x(x + 1) = 0
=> \(\orbr{\begin{cases}x=0\\x+1=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)
Vậy x = 0 và x = -1 là nghiệm của f(x)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Khi P(x) + Q(x) ta đc
\(\left(9x-4x^3+3x^4-6x^2+1\right)+\left(4x^3-9x+5x^2-3x^4+1\right)\)
\(9x-4x^3+3x^4-6x^2+1+4x^3-9x+5x^2-3x^4+1\)
\(x^2+2\)
Ta có : \(C\left(x\right)=x^2+2=0\)
\(x^2=-2\)(vô lí)
![](https://rs.olm.vn/images/avt/0.png?1311)