Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\Rightarrow x\in\varnothing\left(\left|4+2x\right|\ge0>-4\right)\\ b,\Rightarrow\left|3x-1\right|=x-2\\ \Rightarrow\left[{}\begin{matrix}3x-1=x-2\left(x\ge\dfrac{1}{3}\right)\\3x-1=2-x\left(x< \dfrac{1}{3}\right)\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-\dfrac{1}{2}\left(ktm\right)\\x=\dfrac{3}{4}\left(ktm\right)\end{matrix}\right.\\ \Rightarrow x\in\varnothing\\ c,\Rightarrow\left|x+15\right|=3x-1\\ \Rightarrow\left[{}\begin{matrix}x+15=3x-1\left(x\ge-15\right)\\x+15=1-3x\left(x< -15\right)\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=8\left(tm\right)\\x=-\dfrac{7}{2}\left(ktm\right)\end{matrix}\right.\\ \Rightarrow x=8\)
Đặt \(\frac{x}{5}=\frac{y}{-4}=\frac{z}{6}=k\)
=> \(\hept{\begin{cases}x=5k\\y=-4k\\z=6k\end{cases}}\) (1)
Khi đó, ta cóL
\(\left(5k\right).\left(-4k\right).\left(6k\right)=15\)
=> \(-120k^3=15\)
=> \(k^3=-\frac{1}{8}\)
=> \(k=-\frac{1}{2}\)
Thay k = -1/2 vào (1), ta được:
x = 5 . (-1/2) = -2,5
y = -4.(-1/2) = 2
z = 6 . (-1/2) = -3
Vậy ...
b)Đặt \(\frac{x}{5}=\frac{y}{-4}=\frac{z}{6}=k\)
\(\Rightarrow x=5k;y=-4k;z=6k\)
\(\Rightarrow xyz=5k.\left(-4k\right).6k=-120k^3\)
\(\Rightarrow15=-120k^3\)
\(\Rightarrow k^3=-\frac{1}{8}\Rightarrow k=-\frac{1}{2}\)
Từ \(\frac{x}{5}=-\frac{1}{2}\Rightarrow x=5\)
\(\frac{y}{-4}=-\frac{1}{2}\Rightarrow y=2\)
\(\frac{z}{6}=-\frac{1}{2}\Rightarrow z=-3\)
Vậy x = 5 ; y = -2 ; z = -3
Noob ơi, bạn phải đưa vào máy tính ý solve cái là ra x luôn, chỉ tội là đợi hơi lâu
a, 4.(18 - 5x) - 12(3x - 7) = 15(2x - 16) - 6(x + 14)
=> 72 - 20x - 36x + 84 = 30x - 240 - 6x - 84
=> (72 + 84) + (-20x - 36x) = (30x - 6x) + (-240 - 84)
=> 156 - 56x = 24x - 324
=> 24x + 56x = 324 + 156
=> 80x = 480
=> x = 480 : 80 = 6
Vậy x = 6
Câu a lập bảng xét dấu
b) \(3x-\left|x+15\right|=\frac{5}{4}\)
\(\Rightarrow\left|x+15\right|=3x-\frac{5}{4}\)
\(\Rightarrow\orbr{\begin{cases}x+15=3x-\frac{5}{4}\\x+15=-3x+\frac{5}{4}\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}-2x=\frac{-64}{4}\\4x=\frac{-55}{4}\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=8\\x=\frac{-55}{16}\end{cases}}\)
\(\left|2x-1\right|-\left|x+\frac{1}{3}\right|=0\)
=> \(\left|2X-1\right|=\left|X+\frac{1}{3}\right|\)
=> \(2X-1=\pm\left(X+\frac{1}{3}\right)\)
\(TH1:2x-1=x+\frac{1}{3}\) \(TH2:2x-1=-\left(x+\frac{1}{3}\right)\)
=> \(2x-x=\frac{1}{3}+1\) => \(2x-1=-x-\frac{1}{3}\)
=>\(x=\frac{4}{3}\) => \(2x+x=-\frac{1}{3}+1\)
=> \(3x=-\frac{2}{3}=>x=-\frac{2}{9}\)
a) \(A=x^{15}+3x^{14}+5\)
\(=x^{14}\left(x+3\right)+5\)
\(=x^{14}.0+5\)
= 5
b) x = -3 => x + 3 = 0
\(B=\left(x^{2007}+3x^{2006}+1\right)^{2007}\)
\(=\left[x^{2006}\left(x+3\right)+1\right]^{2007}\)
\(=\left(x^{2006}.0+1\right)^{2007}\)
\(=1^{2007}=1\)
\(A=x^{15}+3.x^{14}+5\text{ biết x+3=0}\)
\(A=x^{14}.\left(x+3\right)+5\)
\(\text{Do x+3=0}\Rightarrow A=x^{14}.0+5\)
\(A=0+5\)
\(A=5\) \(\text{Vậy }A=5\text{ với x+3=0}\)
\(B=\left(x^{2007}+3.x^{2006}+1\right)^{2007}\text{ biết x=-3}\)
\(B=\left[x^{2006}.\left(x+3\right)+1\right]^{2007}\)
\(\text{Do x=-3}\Rightarrow B=\left[x^{2006}.\left(-3+3\right)+1\right]^{2007}\)
\(B=\left(x^{2006}.0+1\right)^{2007}\)
\(B=\left(0+1\right)^{2007}\)
\(B=1^{2007}\)
\(B=1\) \(\text{Vậy }B=1\text{ với x=-3}\)
Nếu: 3x - |x - 15| = 5/4
=> |x - 15| = 3x - 5/4
Đk: 3x - 5/4 ≥ 0 => 3x ≥ 5/4 => x ≥ 5/12
Ta có: |x - 15| = 3x - 5/4
\(\Rightarrow\orbr{\begin{cases}x-15=3x-\frac{5}{4}\\x-15=-3x+\frac{5}{4}\end{cases}\Rightarrow}\orbr{\begin{cases}-2x=\frac{55}{4}\\4x=\frac{65}{4}\end{cases}\Rightarrow\orbr{\begin{cases}x=-\frac{55}{8}\left(ktm\right)\\x=\frac{65}{16}\left(tm\right)\end{cases}}}\)
Vậy...
Nếu đề là 3x - |x + 15| = 5/4 thì cách giải tương tự
\(\frac{\left(-3\right)^{10}\cdot15^5}{25^3\cdot\left(-9\right)^7}\)