Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải :
\(\frac{x+1}{x-2}=\frac{3}{4}\)
\(\Rightarrow4.\left(x-1\right)=3.\left(x-2\right)\)
\(\Rightarrow4x-4=3x-6\)
\(\Rightarrow4x-4-3x+6=0\)
\(\Rightarrow x+2=0\)
\(\Rightarrow x=-2\)Không thỏa mãn => Không có giá trị x thỏa mãn đề bài
\(\frac{2x-3}{x+1}=\frac{4}{7}\)
\(\Rightarrow7.\left(2x-3\right)=4.\left(x+1\right)\)
\(\Rightarrow14x-21-4x-4=0\)
\(\Rightarrow10x-25=0\)
\(\Rightarrow10x=25\)
\(\Rightarrow x=\frac{25}{10}=\frac{5}{2}\)
Giá trị trên thỏa mãn đầu bài
Các phần khác em làm tương tự nha
Khi phá ngoặc của của đa thức f(x) ta sẽ được đa thức \(f\left(x\right)=a_1x^n+a_2x^{n-1}+a_3x^{n-2}+...+a_{n-1}x+a_n\)(với n là bậc của đa thức)
Ta có:\(f\left(1\right)=a_1+a_2+a_3+...+a_{n-1}+a_n\)
Mà \(f\left(1\right)=\left(3-12+8\right)^{111}\cdot\left(4+3+2+1-12+1\right)^{2222}\)\(=-1\)
Suy ra:\(a_1+a_2+a_3+...+a_{n-1}+a_n=-1\)
Vậy tổng các hệ số của đa thức sau khi phá ngoặc là -1
a)\(\left(\frac{4}{5}\right)^{2x+7}=\left(\frac{4}{5}\right)^4\)
=> 2x + 7 = 4
2x = 4 - 7
2x = -3
x = -3 : 2
x = -1,5
Vậy x = -1,5
\(B\left(x\right)=x^5+3x^3+x=x\left(x^4+3x^2+1\right)=x\left(x^4+x^2+x^2+1+x^2\right)=x\left[x^2\left(x^2+1\right)+x^2+1+x^2\right]\)
\(=x\left[\left(x^2+1\right)\left(x^2+1\right)+x^2\right]=x\left[\left(x^2+1\right)^2+x^2\right]\)
Vì: \(x^2+1>0,x^2\ge0\)nên \(\left(x^2+1\right)^2+x^2>0\)
Vậy B(x) có nghiệm khi x=0
-5x-12=13/12 x
x=-144/73 loại
x+2=13/12x
x=24 loại
5x+12=13/12 x
x=-144/47 loại
Vậy không có x nào thỏa mãn