Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=x^2-4x+10=x^2-4x+4+6=\left(x-2\right)^2+6\ge6\)
Vậy GTNN A là 6 khi x - 2 = 0 <=> x = 2
\(B=\left(1-x\right)\left(3x-4\right)=3x-4-3x^2+4x=-3x^2+7x-4\)
\(=-3\left(x^2-\frac{7}{3}x+\frac{4}{3}\right)=-3\left(x^2-2.\frac{7}{6}x+\frac{49}{36}-\frac{1}{36}\right)=-3\left(x-\frac{7}{6}\right)^2+\frac{1}{12}\ge\frac{1}{12}\)
\(=3\left(x-\frac{7}{6}\right)^2-\frac{1}{12}\le-\frac{1}{12}\)Vậy GTLN B là -1/12 khi x = 7/6
\(C=3x^2-9x+5=3\left(x^2-3x+\frac{5}{3}\right)=3\left(x^2-2.\frac{3}{2}x+\frac{9}{4}-\frac{7}{12}\right)\)
\(=3\left(x-\frac{3}{2}\right)^2-\frac{7}{4}\ge-\frac{7}{4}\)Vậy GTNN C là -7/4 khi x = 3/2
\(D=-2x^2+5x+2=-2\left(x^2-\frac{5}{2}x-1\right)=-2\left(x^2-2.\frac{5}{4}x+\frac{25}{16}-\frac{41}{16}\right)\)
\(=-2\left(x-\frac{5}{4}\right)^2+\frac{21}{8}\le\frac{21}{8}\)Vậy GTLN D là 21/8 khi x = 5/4
a)\(\left|x^3+x\right|-\left|9x^2+9\right|=0\)
Mà \(\hept{\begin{cases}x^3+x\ge0\\9x^2+9\ge0\end{cases}}\) và \(\left|x^3+x\right|-\left|9x^2+9\right|=0\)
\(\Rightarrow\hept{\begin{cases}x^3+x=0\\9x^2+9=0\end{cases}}\)
Mà \(9x^2\ge0\Leftrightarrow9x^2+9>0\)
Vậy \(x\in\left\{\varnothing\right\}\)
b) \(\left(3x+2\right)-\left(x-1\right)=4\left(x+1\right)\)
\(\Leftrightarrow3x+2-x+1=4x+4\)
\(\Leftrightarrow\left(3x-x\right)+\left(2+1\right)=4x+4\)
\(\Leftrightarrow2x+3=4x+4\)
\(\Leftrightarrow2x-4x=4-3\)
\(\Leftrightarrow-2x=1\)
\(\Leftrightarrow x=\frac{-1}{2}\)
Vậy\(x=\frac{-1}{2}\)
c) \(2\left(x-1\right)-5\left(x+2\right)=-10\)
\(\Leftrightarrow2-2-5x-10=-10\)
\(\Leftrightarrow2-2-5x=0\)
\(\Leftrightarrow0-5x=0\)
\(\Leftrightarrow5x=0\)
\(\Leftrightarrow x=0\)
Vậy x = 0
ko ghi lại đề
<=> 36x 2-12 x -36x2+27x=30
<=>15x=30
<=> x=30:15
=>x=2
\(\left(3x^2-4\right)-9x\left(4x-3\right)=30\)
\(\Rightarrow3x^2-4-36x^2+27x=30\)
\(\Rightarrow-33x^2+27x-34=0\)
tớ chịu
x^5-3*x^2-(7*x^4-9*x^3+x^2-1/4*x+5*x^4-x^5+x^2-2*x^3+3*x^2-1/4)=0
Bài 3:
\(f\left(x\right)=9x^3-\frac{1}{3}x+3x^2-3x+\frac{1}{3}x^2-\frac{1}{9}x^3-3x^2-9x+27+3x\)
\(f\left(x\right)=\left(9x^3-\frac{1}{9}x^3\right)-\left(\frac{1}{3}x+3x+9x-3x\right)+\left(3x^2-3x^2\right)+27\)
\(f\left(x\right)=\frac{80}{9}x^3-\frac{28}{3}x+27\)
Thay x = 3 vào đa thức, ta có:
\(f\left(3\right)=\frac{80}{9}.3^3-\frac{28}{3}.3+27\)
\(f\left(3\right)=240-28+27=239\)
Vậy đa thức trên bằng 239 tại x = 3
Thay x = -3 vào đa thức. ta có:
\(f\left(-3\right)=\frac{80}{9}.\left(-3\right)^3-\frac{28}{3}.\left(-3\right)+27\)
\(f\left(-3\right)=-240+28+27=-185\)
Bài 4: \(f\left(x\right)=2x^6+3x^2+5x^3-2x^2+4x^4-x^3+1-4x^3-x^4\)
\(f\left(x\right)=2x^6+\left(3x^2-2x^2\right)+\left(5x^3-x^3-4x^3\right)+\left(4x^4-x^4\right)\)
\(f\left(x\right)=2x^6+x^2+3x^4\)
Thay x=1 vào đa thức, ta có:
\(f\left(1\right)=2.1^6+1^2+3.1^4=2+1+3=6\)
Đa thức trên bằng 6 tại x =1
Thay x = - 1 vào đa thức, ta có:
\(f\left(-1\right)=2.\left(-1\right)^6+\left(-1\right)^2+3.\left(-1\right)^4=2+1+3=6\)
Đa thức trên có nghiệm = 0
Khi P(x) + Q(x) ta đc
\(\left(9x-4x^3+3x^4-6x^2+1\right)+\left(4x^3-9x+5x^2-3x^4+1\right)\)
\(9x-4x^3+3x^4-6x^2+1+4x^3-9x+5x^2-3x^4+1\)
\(x^2+2\)
Ta có : \(C\left(x\right)=x^2+2=0\)
\(x^2=-2\)(vô lí)