Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 7x - 2x = 617 : 615 + 44
=> 5x = 36 + 44
=> 5x = 80
=> x = 80 : 5 = 16
b) 9x - 1 = 18 + 1/9 - 1/9 - 9
=> 9x - 1 = 9
=> x - 1 = 1
=> x = 1 + 1 = 2
c) [(6x - 39) : 7] . 4 = 12
=> (6x - 39) : 7 = 12 : 4
=> (6x - 39) : 7 = 3
=> 6x - 39 = 3.7
=> 6x - 39 = 21
=> 6x = 21 + 39
=> 6x = 60
=> x = 60 : 6
=> x = 10
d) 2 - (x - 1) - 3x = 20
=> 2 - x + 1 - 3x = 20
=> 3 - 4x = 20
=> 4x = 3 - 20
=> 4x = -17
=> x = -17 : 4 = -17/4
e) 2|x - 3| + 7 = 56 : 52
=> 2|x - 3| + 7 = 625
=> 2|x - 3| = 625 - 7
=> 2|x - 3| = 618
=> |x - 3| = 618 : 2
=> |x - 3| = 309
=> \(\orbr{\begin{cases}x-3=309\\x-3=-309\end{cases}}\)
=> \(\orbr{\begin{cases}x=312\\x=-306\end{cases}}\)
Bài 1: Viết mỗi biểu thức sau về dạng tổng (hiệu) 2 bình phương:
a. x2 - 2xy + 2y2 + 2y +1
= (x2 - 2xy + y2) +( y 2 + 2y +1)
= (x-y)2 + (y+1)2
b. 4x2 - 12x - y2 + 2y + 8
= (4x2 - 12x + 9 ) - (y2 - 2y +1 )
= (2x-3)2 - (y-1)2
1) Cho f(x) =0
=> x^2 + 6x +5 =0
x^2 +x +5x +5 = 0
x. ( x+1) + 5.(x+1) =0
(x+1) .(x+5) =0
=> x+1 =0 => x +5 =0
x =-1 x = -5
KL: x =-1 hoặc x =-5
bn lm như trên mk nha!!!!!
\(\frac{1}{5^{18}}=\frac{5^{18}}{5^x}\)
\(\Rightarrow5^x=5^{18}.5^{18}\)
\(\Rightarrow5^x=5^{36}\)
\(\Rightarrow x=36\)
Chúc bn học tốt
\(5^{18}=\frac{5^{18}}{5^x}\)
\(\Rightarrow5^{18}.5^x=5^{18}\)
\(\Rightarrow5^x=1\)
\(\Rightarrow5^x=5^0\)
\(\Rightarrow x=0\)
Vậy \(x=0\)
Tham khảo nhé~
\(\frac{72-x}{x-18}=\frac{x}{5}\)
=> 5(72 - x) = x(x - 18)
=> 360 - 5x = x2 - 18x
=> x2 - 13x = 360
=> x2 - 6,5x - 6,5x + 42,25 = 360 + 42,25
=> x(x - 6,5) - 6,5(x - 6,5) = 402,25
=> (x - 6,5)2 = 402,25
=> \(\orbr{\begin{cases}x=\sqrt{402,25}+6,5\\x=-\sqrt{402,25}+6,5\end{cases}}\)
Ta có : 2018.|x - 18| + (x - 18)2 = 2019.|18 - x|
<=> 2018.|x - 18| + (x - 18)2 = 2019.|x - 18|
<=> (x - 18)2 = 2019.|x - 18| - 2018.|x - 18|
<=> (x - 18)2 = |x - 18|
=> \(\orbr{\begin{cases}\left(x-18\right)^2=x-18\\\left(x-18\right)^2=-x+18\end{cases}\Rightarrow\orbr{\begin{cases}\left(x-18\right)^2-\left(x-18\right)=0\\\left(x-18\right)^2+\left(x-18\right)=0\end{cases}}}\)
Nếu (x - 18)2 - (x - 18) = 0
=> (x - 18).(x - 18 - 1) = 0
=> (x - 18).(x - 19) = 0
=> \(\orbr{\begin{cases}x-18=0\\x-19=0\end{cases}\Rightarrow\orbr{\begin{cases}x=18\\x=19\end{cases}}}\)
Nếu (x - 18)2 + (x - 18) = 0
=> (x - 18).(x - 18 + 1) = 0
=> (x - 18).(x - 17) = 0
=> \(\orbr{\begin{cases}x-18=0\\x-17=0\end{cases}\Rightarrow\orbr{\begin{cases}x=18\\x=17\end{cases}}}\)
Vậy \(x\in\left\{17;18;19\right\}\)