Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}\)
=> \(\frac{y+z}{x}-1=\frac{z+x}{y}-1=\frac{x+y}{z}-1\)
=> \(\frac{y+z}{x}=\frac{z+x}{y}=\frac{x+y}{z}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{y+z}{x}=\frac{x+z}{y}=\frac{x+y}{z}=\frac{y+z+x+z+x+y}{x+y+z}=2\)
+) \(\frac{y+z}{x}=2\)
=> y+z=2x
+) \(\frac{x+z}{y}=2\)
=>x+z=2y
+)\(\frac{x+y}{z}=2\)
=> x+y=2z
Mà B= ( 1+x/y)(1+y/z) (1+z/x)
B= \(\frac{x+y}{y}.\frac{y+z}{z}.\frac{z+x}{x}\)
B= \(\frac{2z.2x.2y}{xyz}\)
B= 8
~ Chúc bạn học tốt ~
Tích và kết bạn với mình nha!
Ta có: \(B=\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{z}{x}\right)=\frac{x+y}{y}.\frac{y+z}{z}.\frac{x+z}{x}\)
Lại có:
\(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}\)
\(\Leftrightarrow\frac{y+z-x}{x}+2=\frac{z+x-y}{y}+2=\frac{x+y-z}{z}+2\)
\(\Leftrightarrow\frac{x+y+z}{x}=\frac{x+y+z}{y}=\frac{x+y+z}{z}\)
(+) Xét x + y + z = 0\(\Rightarrow\hept{\begin{cases}x+y=-z\\y+z=-x\\z+x=-y\end{cases}}\)
Thay vào ta có: \(B=\frac{x+y}{y}.\frac{y+z}{z}.\frac{x+z}{x}=\frac{-z}{y}.\frac{-x}{z}.\frac{-y}{x}=\frac{-xyz}{xyz}=-1\)
(+) Xét x + y + z \(\ne\) 0
Tương tự như trên ta có: \(\hept{\begin{cases}x+y=2z\\y+z=2x\\z+x=2y\end{cases}}\)
Thay vào ta có: \(B=\frac{x+y}{y}.\frac{y+z}{z}.\frac{x+z}{x}=\frac{2z}{y}.\frac{2x}{z}.\frac{2y}{x}=\frac{8xyz}{xyz}=8\)
Vậy \(\hept{\begin{cases}B=-1\Leftrightarrow x+y+z=0\\B=8\Leftrightarrow x+y=y+z=z+x\Leftrightarrow x=y=z\end{cases}}\)
TH1: a+b+c khác 0
\(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}\)
\(\Rightarrow2+\frac{a+b-c}{c}=2+\frac{b+c-a}{a}=2+\frac{c+a-b}{b}\)
\(\Rightarrow\frac{a+b+c}{c}=\frac{a+b+c}{a}=\frac{a+b+c}{b}\)
\(\Rightarrow a=b=c\)
thay a=b=c vào B ta có:
\(B=\left(1+\frac{a}{a}\right)\cdot\left(1+\frac{a}{a}\right)\cdot\left(1+\frac{a}{a}\right)=2\cdot2\cdot2=8\)
TH2: a+b+c=0
=> c=-a-b
=>a=-b-c
=>b=-a-c
thay a,b,c vào B ta có:
\(B=\left(1+\frac{-\left(a+c\right)}{a}\right)\cdot\left(1+\frac{-\left(b+c\right)}{c}\right)\cdot\left(1+\frac{-\left(a+b\right)}{b}\right)\)
\(B=\left(-\frac{c}{a}\right)\cdot\left(-\frac{b}{c}\right)\cdot\left(-\frac{a}{b}\right)=-1\)
p/s: th2 ko chắc nhá
(x-1)200+(y+2)300=0
(x-1)^200 > 0 ; (y+2)^300>0
=> (x-1)^200 = 0 và (y + 2)^300 = 0
=> x - 1 = 0 và y + 2 = 0
=> x = 1 và y = - 2
thay vào rồi tính như bình thường thôi
Vì \(\left(x-1\right)^{200}\ge0\forall x\); \(\left(y+2\right)^{300}\ge0\forall y\)
\(\Rightarrow\left(x-1\right)^{200}+\left(y+2\right)^{300}\ge0\)
mà \(\left(x-1\right)^{200}+\left(y+2\right)^{300}=0\)( giả thiết )
\(\Rightarrow\left(x-1\right)^{200}+\left(y+2\right)^{300}=0\)\(\Leftrightarrow\hept{\begin{cases}x-1=0\\y+2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=-2\end{cases}}\)
Thay \(x=1\)và \(y=-2\)vào biểu thức ta được:
\(P=2.1^{100}-5.\left(-2\right)^3+4=2-5.\left(-8\right)+4=2+5.8+4\)
\(=2+40+4=46\)
Vì x dương nên \(x^3+3x^2+5>x+3\)
hay \(5^y>5^z\Rightarrow5^y⋮5^z\)
\(\Rightarrow x^3+3x^2+5⋮x+3\)
\(\Rightarrow x^2\left(x+3\right)+5⋮x+3\)
Vì \(x^2\left(x+3\right)⋮x+3\)nên \(5⋮x+3\)
\(\Rightarrow x+3\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
Mà x + 3 > 3 ( do x dương ) nên x + 3 = 5 \(\Rightarrow x=2\)
\(\Rightarrow5^z=2+3=5\Leftrightarrow z=1\)
và \(5^y=8+12+5=25\Rightarrow y=2\)
Vậy x = 2; y = 2; z = 1
Online Math là nhất
Online Math như cặc