Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : |2x-1|+|1-2x|=8
=> |2x-1|+|2x-1|=8
=>2|2x-1|=8
=>|2x-1|=4
=>\(2x-1=\pm4\)
=>\(\orbr{\begin{cases}x=2,5\\x=-1,5\end{cases}}\)
Vậy x=2,5 hoặc x= -1,5
Ta có : |2x - 1| + |1 - 2x| = 8
<=> |2x - 1| + |2x - 1| = 8
=> 2.|2x - 1| = 8
=> |2x - 1| = 4
=> \(\orbr{\begin{cases}2x-1=4\\2x-1=-4\end{cases}\Rightarrow\orbr{\begin{cases}2x=5\\2x=-3\end{cases}\Rightarrow}\orbr{\begin{cases}x=\frac{5}{2}\\x=-\frac{3}{2}\end{cases}}}\)
Ta có: 2x=3y
nên \(\dfrac{x}{3}=\dfrac{y}{2}\)
hay \(\dfrac{x}{9}=\dfrac{y}{6}\left(1\right)\)
Ta có: 4y=6z
nên \(\dfrac{y}{6}=\dfrac{z}{4}\left(2\right)\)
Từ (1) và (2) suy ra \(\dfrac{x}{9}=\dfrac{y}{6}=\dfrac{z}{4}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{9}=\dfrac{y}{6}=\dfrac{z}{4}=\dfrac{x+2y-3z}{9+2\cdot6-3\cdot4}=\dfrac{9}{9}=1\)
Do đó: x=9; y=6; z=4
a, \(\left|x+2\right|-\left|x+7\right|=0\Rightarrow\left|x+2\right|=\left|x+7\right|\Rightarrow\orbr{\begin{cases}x+2=x+7\\x+2=-x-7\end{cases}\Rightarrow\orbr{\begin{cases}0=5\left(loại\right)\\2x=-9\end{cases}\Rightarrow}x=\frac{-9}{2}}\)
b, - Nếu \(2x-1\ge0\Rightarrow x\ge\frac{1}{2}\), ta có: 2x - 1 = 2x - 1 => 2x = 2x (thỏa mãn với mọi x)
- Nếu 2x - 1 < 0 => \(x< \frac{1}{2}\), ta có: 2x - 1 = 1 - 2x => 4x = 2 => x = \(\frac{1}{2}\) (không thỏa mãn điều kiện)
Vậy \(x\ge\frac{1}{2}\)
c,d tương tự b
e, tương tự a
\(a,\frac{1}{2}x+\frac{5}{2}=\frac{7}{2}x-\frac{3}{4}\)
\(\Leftrightarrow\frac{1}{2}x+\frac{5}{2}-\frac{7}{2}x=-\frac{3}{4}\)
\(\Leftrightarrow\frac{1}{2}x-\frac{7}{2}x+\frac{5}{2}=-\frac{3}{4}\)
\(\Leftrightarrow-3x+\frac{5}{2}=-\frac{3}{4}\)
\(\Leftrightarrow-3x=-\frac{13}{4}\)
\(\Leftrightarrow x=-\frac{13}{4}:(-3)=-\frac{13}{4}:\frac{-3}{1}=-\frac{13}{4}\cdot\frac{-1}{3}=\frac{13}{12}\)
\(b,\frac{2}{3}x-\frac{2}{5}=\frac{1}{2}x-\frac{1}{3}\)
\(\Leftrightarrow\frac{2}{3}x-\frac{2}{5}-\frac{1}{2}x=-\frac{1}{3}\)
\(\Leftrightarrow\frac{2}{3}x-\frac{1}{2}x-\frac{2}{5}=-\frac{1}{3}\)
\(\Leftrightarrow\frac{1}{6}x-\frac{2}{5}=-\frac{1}{3}\)
\(\Leftrightarrow\frac{1}{6}x=\frac{1}{15}\)
\(\Leftrightarrow x=\frac{1}{15}:\frac{1}{6}=\frac{1}{15}\cdot6=\frac{6}{15}=\frac{2}{5}\)
\(c,\frac{1}{3}x+\frac{2}{5}(x+1)=0\)
\(\Leftrightarrow\frac{1}{3}x+\frac{2}{5}x+\frac{2}{5}=0\)
\(\Leftrightarrow\frac{11}{15}x=-\frac{2}{5}\)
\(\Leftrightarrow x=-\frac{6}{11}\)
d,e,f Tương tự
\(\left|1-2x\right|=2x-1\)
\(\Rightarrow\orbr{\begin{cases}1-2x=2x-1\\1-2x=1-2x\end{cases}}\Rightarrow\orbr{\begin{cases}-2x-2x=1+1\\-2x+2x=1-1\end{cases}}\Rightarrow\orbr{\begin{cases}-4x=2\\0x=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-\frac{1}{2}\\x=0\end{cases}}\)
vay \(\orbr{\begin{cases}x=-\frac{1}{2}\\x=0\end{cases}}\)
|1 - 2x| = 2x - 1
=> 1 - 2x = 2x - 1 => x = ko tồn tại
1 - 2x = -2x + 1 => x \(\in N\)