K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 4 2021

11.3+13.5+15.7+...+1x(x+2)=204111.3+13.5+15.7+...+1x(x+2)=20/41

=> 1/2(1−1/3+1/3−1/5+1/5−1/7+...+1/x−1/x+2)=20/41

=> 1−1x+2=40/41

=> 1/x+2=1/41

=> x + 2 = 41

=> x = 39

8 tháng 8 2023

a) \(\dfrac{1}{1\times3}+\dfrac{1}{3\times5}+\dfrac{1}{5\times7}+...+\dfrac{1}{x\times\left(x+3\right)}=\dfrac{99}{200}\)

Ta có: \(\left(1-\dfrac{1}{3}\right)\times\dfrac{1}{2}+\left(\dfrac{1}{3}-\dfrac{1}{5}\right)\times\dfrac{1}{2}+\left(\dfrac{1}{5}-\dfrac{1}{7}\right)\times\dfrac{1}{2}+...+\left(\dfrac{1}{x}-\dfrac{1}{x+3}\right).\dfrac{1}{2}=\dfrac{99}{200}\)

\(\dfrac{1}{2}\times\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{x}-\dfrac{1}{x+3}\right)=\dfrac{99}{200}\)

\(\dfrac{1}{2}\times\left(1-\dfrac{1}{x+3}\right)=\dfrac{99}{200}\)

\(1-\dfrac{1}{x+3}=\dfrac{99}{200}:\dfrac{1}{2}\)

\(1-\dfrac{1}{x+3}=\dfrac{99}{100}\)

\(\dfrac{1}{x+1}=1-\dfrac{99}{100}\)

\(\dfrac{1}{x+1}=\dfrac{1}{100}\)

\(\Rightarrow x+1=100\)

\(x=100-1\)

\(x=99\)

8 tháng 8 2023

câu b thiếu kết quả đúng không bn?

18 tháng 8 2015

a) 1/1.2 + 1/2.3 + 1/3.4 + .... + 1/x.(x+1) = 499/500

1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + .... + 1/x - 1/x+1 = 499/500

1 - 1/x+1 = 499/500

1/x+1 = 1 - 499/500

1/x+1 = 1/500

x + 1 = 500

     x = 500 - 1 

     x = 499

b) 1/1.3 + 1/3.5 + 1/5.7 + .... + 1/x.(x+2) = 20/41

1/2 . [ 2/1.3 + 2/3.5 + 2/5.7 + ... + 2/x.(x+2) ] = 20/41

1/2 . [ 1 - 1/3 + 1/3 - 1/5 + 1/5 - 1/7 + ... + 1/x - 1/x+2 ] = 20/41

1/2 . [ 1 - 1/x+2 ) = 20/41

1 - 1/x+2 = 20/41 : 1/2

1 - 1/x+2 = 40/41

1/x+2 = 1 - 40/41

1/x+2 = 1/41

x + 2 = 41

      x = 41 - 2 

      x = 39

2 tháng 3 2017

\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+....+\frac{1}{x\left(x+2\right)}=\frac{8}{17}\)

\(\Leftrightarrow2\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+....+\frac{1}{x\left(x+2\right)}\right)=2.\frac{8}{17}\)

\(\Leftrightarrow\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+....+\frac{2}{x\left(x+2\right)}=\frac{16}{17}\)

\(\Leftrightarrow1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+....+\frac{1}{x}-\frac{1}{x+2}=\frac{16}{17}\)

\(\Leftrightarrow1-\frac{1}{x+2}=\frac{16}{17}\)

\(\Leftrightarrow\frac{1}{x+2}=1-\frac{16}{17}=\frac{1}{17}\)

\(\Rightarrow x+2=17\Rightarrow x=15\)

2 tháng 3 2017

x là số lẻ vậy x có thể là: 1 ; 3 ; 5 ; 7 ; 9

  Còn lại bạn tự giải nha! Cứ dùng phương pháp loại suy thử với từng số là ra! dễ mà

26 tháng 5 2018

a) \(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{x}=1\)

\(\Rightarrow\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}\right)+\frac{1}{x}=1\)

\(\Rightarrow\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}\right)+\frac{1}{x}=1\)

\(\Rightarrow\frac{1}{2}.\left(1-\frac{1}{9}\right)+\frac{1}{x}=1\)

\(\Rightarrow\frac{1}{2}.\frac{8}{9}+\frac{1}{x}=1\)

\(\Rightarrow\frac{4}{9}+\frac{1}{x}=1\)

\(\Rightarrow\frac{1}{x}=1-\frac{4}{9}\)

\(\Rightarrow\frac{1}{x}=\frac{5}{9}\)

\(\Rightarrow x=\frac{1.9}{5}\)

\(\Rightarrow x=\frac{9}{5}\)

Vậy x = \(\frac{9}{5}\)

b) \(\frac{2}{3}-\frac{1}{3}.\left(x-2\right)=\frac{1}{4}\)

\(\Rightarrow\frac{1}{3}.\left(x-2\right)=\frac{2}{3}-\frac{1}{4}\)

\(\Rightarrow\frac{1}{3}.\left(x-2\right)=\frac{5}{12}\)

\(\Rightarrow x-2=\frac{5}{12}:\frac{1}{3}\)

\(\Rightarrow x-2=\frac{5}{4}\)

\(\Rightarrow x=\frac{5}{4}+2\)

\(\Rightarrow x=\frac{13}{4}\)

Vậy x = \(\frac{13}{4}\)

_Chúc bạn học tốt_

27 tháng 10 2020

sửa đề câu a  và câu b  nhá  , mik nghĩ đề như này :

  \(\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+\frac{2}{7\cdot9}+...+\frac{2}{213\cdot215}\)

 \(=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{213}-\frac{1}{215}\)

\(\frac{1}{1}-\frac{1}{215}\)

\(=\frac{214}{215}\)

b, đặt \(A=\frac{1}{1\cdot3}+\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+\frac{1}{7\cdot9}+...+\frac{1}{213\cdot215}\)

    \(A\cdot2=\frac{2}{1\cdot3}+\frac{2}{3.5}+\frac{2}{5\cdot7}+\frac{2}{7\cdot9}+...+\frac{2}{213\cdot215}\)

\(A\cdot2=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{213}-\frac{1}{215}\)

\(A\cdot2=\frac{1}{1}-\frac{1}{215}\)

\(A\cdot2=\frac{214}{215}\)

\(A=\frac{214}{215}:2\)

\(A=\frac{107}{215}\)

27 tháng 10 2020

@ミ★Ŧɦươйǥ★彡 cảm ơn bạn nhiều

16 tháng 5 2017

1. 0,8 x 2 x 48 + 1,6 x 2 + 50 x 1,6

= 1,6 x 48 + 1,6 x 2 + 50 x 1,6

= 1,6 x [ 48 + 50 + 2 ]

= 1,6 x 100

= 160

2. 1/1x3 + 1/3x5 + 1/5x7 + 1/7x9

= 1/1 + 1/3 - 1/3 + 1/5 - 1/5 + 1/7 - 1/7 + 1/9

= 1/1 - 1/9

=  8/9

10 tháng 7 2016

\(\frac{1}{1x3}+\frac{1}{3x5}+\frac{1}{5x7}+...+\frac{1}{\left(2n+1\right)x\left(2x+3\right)}=\frac{n+1}{2n+3}\)

=>\(2x\left(\frac{1}{1x3}+\frac{1}{3x5}+\frac{1}{5x7}+...+\frac{1}{\left(2n+1\right)x\left(2n+3\right)}\right)=2x\frac{n+1}{2n+3}\)

=>\(\frac{2}{1x3}+\frac{2}{3x5}+\frac{2}{5x7}+...+\frac{2}{\left(2n+1\right)\left(2n+3\right)}=\frac{2n+2}{2n+3}\)

=>\(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2n+1}-\frac{1}{2n+3}=\frac{2n+2}{2n+3}\)

=>\(1-\frac{1}{2n+3}=\frac{2n+2}{2n+3}\)

=>\(\frac{2n+2}{2n+3}=\frac{2n+2}{2n+3}\)

=>.....

23 tháng 6 2017

\(\left(\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{19.21}\right)x=\frac{9}{7}\)

\(\left[\frac{1}{2}\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{19}-\frac{1}{21}\right)\right]x=\frac{9}{7}\)

\(\left[\frac{1}{2}\left(\frac{1}{3}-\frac{1}{21}\right)\right]x=\frac{9}{7}\)

\(\left(\frac{1}{2}.\frac{2}{7}\right)x=\frac{9}{7}\)

\(\frac{1}{7}.x=\frac{9}{7}\)

\(x=\frac{9}{7}\div\frac{1}{7}\)

\(x=9\)

Vậy ...

29 tháng 5 2019

\(\left(x\cdot2,4-4,2\right)\div x=1\)

\(\Rightarrow x\cdot2,4-4,2=x\)

\(\Rightarrow x\cdot2,4=x+4,2\)

\(\Rightarrow\frac{12x}{5}=\frac{5x+21}{5}\)

\(\Rightarrow12x=5x+21\)

\(\Rightarrow12x-5x=21\)

\(\Rightarrow7x=21\Rightarrow x=\frac{21}{7}=3\)

Vậy x = 3 

29 tháng 5 2019

\(\frac{1}{1\cdot3}+\frac{1}{3\cdot5}+...+\frac{1}{x\left(x+2\right)}\)

\(=\frac{1}{2}\cdot\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+2}\right)\)

\(=\frac{1}{2}\cdot\left(1-\frac{1}{x+2}\right)\)

\(=\frac{1}{2}\cdot\frac{x+1}{x+2}\)

\(=\frac{x+1}{2x+2}\)