\(\sqrt{3x}-\dfrac{1}{2}\sqrt{3x}+\dfrac{3}{4}\sqrt{3x}+5=5\sqrt{3x}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 10 2018

a. \(\sqrt{3x}\)-\(\dfrac{1}{2}\sqrt{3x}\)+\(\dfrac{3}{4}\sqrt{3x}\)+5 = 5\(\sqrt{3x}\)(ĐKXĐ: x ≥ 0)

\(\sqrt{3x}\)(1 - \(\dfrac{1}{2}\)+\(\dfrac{3}{4}\)- 5) = -5

⇔ -\(\dfrac{15}{4}\) \(\sqrt{3x}\) = -5 ⇔ \(\sqrt{3x}\) = \(\dfrac{4}{3}\) ⇔ 3x = \(\dfrac{16}{9}\) ⇔ x = \(\dfrac{16}{27}\) (TMĐKXĐ)

Vậy x = \(\dfrac{16}{27}\)

b. \(\sqrt{\left(1-2x\right)^2}\) = 2 ⇔ \(|1-2x|\) = 2 (1)

- Xét x ≥ \(\dfrac{1}{2}\) thì phương trình (1) trở thành: 2x - 1 = 2

⇔ 2x = 3 ⇔ x= \(\dfrac{3}{2}\)(∈ khoảng đang xét)

- Xét x < \(\dfrac{1}{2}\) thì phương trình (1) trở thành: 1 - 2x =2

⇔ 2x = -1 ⇔ x = \(\dfrac{-1}{2}\) (∈ khoảng đang xét)

Vậy x = \(\dfrac{3}{2}\) hoặc x = \(\dfrac{-1}{2}\)

24 tháng 9 2018

a)\(\sqrt{3x}=4\)

\(\Leftrightarrow3x=16\)

\(\Leftrightarrow x=\dfrac{16}{3}\)

24 tháng 9 2018

c)\(\sqrt{\left(1-2x\right)^2}=2\)

\(\Leftrightarrow1-2x=2\)

\(\Leftrightarrow-2x=1\)

\(\Leftrightarrow x=\dfrac{-1}{2}\)

1 tháng 7 2019

2,\(pt\Leftrightarrow12\left(\sqrt{x+1}-2\right)+x^2+x-12=0\)

\(\Leftrightarrow12\cdot\frac{x-3}{\sqrt{x+1}+2}+\left(x-3\right)\left(x+4\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(\frac{12}{\sqrt{x+1}+2}+x+4\right)=0\)

\(\left(\frac{12}{\sqrt{x+1}+2}+x+4\right)\ge0\left(\forall x>-1\right)\)

\(\Rightarrow x=3\)

1 tháng 7 2019

c,\(pt\Leftrightarrow3\left(x-1\right)+\frac{x-1}{4x}+\left(2-\sqrt{3x+1}\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(3+\frac{1}{4x}+\frac{1}{2+\sqrt{3x+1}}\right)=0\)

\(\Rightarrow x=1\)

\(3+\frac{1}{4x}+\frac{1}{2+\sqrt{3x+1}}=0\)

bạn làm nốt pần này nhá

3 tháng 6 2018

a) Vì biểu thức \(\sqrt{\dfrac{-5}{x^2+6}}\)có -5<0 nên làm cho cả phân số âm

Từ đó suy ra căn thức vô nghiệm

Vậy không có giá trị nào của x để biểu thức trên xác định

b) \(\sqrt{\left(x-1\right)\left(x-3\right)}\)

Để biểu thức trên xác định thì chia ra 4 TH (vì để xác định thì cả x-1 và x-3 cùng dương hoặc cùng âm)

\(\left[\begin {array} {} \begin{cases} x-1\geq0\\ x-3\geq0 \end{cases} \Leftrightarrow \begin{cases} x\geq1\\ x\geq3 \end{cases} \Rightarrow x\geq3 \\ \begin{cases} x-1\leq0\\ x-3\leq0 \end{cases} \Leftrightarrow \begin{cases} x\leq1\\ x\leq3 \end{cases} \Rightarrow x\leq1 \end{array} \right.\)

c) \(\sqrt{x^2-4}\) \(\Leftrightarrow\)\(\sqrt{\left(x-2\right)\left(x+2\right)}\)

Rồi làm như câu b

d) \(\sqrt{\dfrac{2-x}{x+3}}\)

Để biểu thức trên xác định thì

\(\begin{cases}2-x\ge0\\x+3>0\end{cases}\Leftrightarrow\begin{cases}x\ge2\\x>-3\end{cases}\) \(\Rightarrow\) \(x\ge2\) hoặc \(x>-3\)

e) Ở các biểu thức sau này nếu chỉ có căn thức có ẩn và + (hoặc trừ) với 1 số thì chỉ cần biến đổi cái có ẩn còn cái số thì kệ xác nó đi haha )

\(\sqrt{x^2-3x}\Leftrightarrow\sqrt{x\left(x-3\right)}\)

Để biểu thức trên xác định thì \(x\ge0\)\(x-3\ge0\Leftrightarrow x\ge3\)

Bữa sau mình làm tiếp

Tự nhiên trả lời làm cái gì

Đăng lên để hỏi

Chứ không phải trả lời nha o0o I am a studious person CTV 

25 tháng 9 2017

chuẩn không cần phải chỉnh nha bn!!!!

AH
Akai Haruma
Giáo viên
25 tháng 2 2019

Câu 1:

PT \(\Leftrightarrow x^2+3x+8=(x+5)\sqrt{x^2+x+2}\)

\(\Leftrightarrow (x^2+x+2)+2(x+5)-4=(x+5)\sqrt{x^2+x+2}\)

Đặt \(\sqrt{x^2+x+2}=a; x+5=b(a\geq 0)\)

\(PT\Leftrightarrow a^2+2b-4=ba\)

\(\Leftrightarrow (a^2-4)-b(a-2)=0\)

\(\Leftrightarrow (a-2)(a+2-b)=0\Rightarrow \left[\begin{matrix} a=2\\ a+2=b\end{matrix}\right.\)

Nếu \(a=2\Rightarrow x^2+x+2=a^2=4\)

\(\Leftrightarrow x^2+x-2=0\Leftrightarrow (x-1)(x+2)=0\Rightarrow x=1; x=-2\) (đều thỏa mãn)

Nếu \(a+2=b\Leftrightarrow \sqrt{x^2+x+2}+2=x+5\)

\(\Leftrightarrow \sqrt{x^2+x+2}=x+3\)

\(\Rightarrow \left\{\begin{matrix} x+3\geq 0\\ x^2+x+2=(x+3)^2\end{matrix}\right.\Rightarrow \left\{\begin{matrix} x+3\geq 0\\ 5x+7=0\end{matrix}\right.\Rightarrow x=\frac{-7}{5}\) (thỏa mãn)

Vậy..........

AH
Akai Haruma
Giáo viên
25 tháng 2 2019

Câu 2:

ĐKXĐ: \(x\geq 1\) hoặc \(x\leq \frac{1}{2}\)

\(10x^2-9x-8x\sqrt{2x^2-3x+1}+3=0\)

\(\Leftrightarrow 3(2x^2-3x+1)-8x\sqrt{2x^2-3x+1}+4x^2=0\)

Đặt \(\sqrt{2x^2-3x+1}=a(a\geq 0)\)

Khi đó PT \(\Leftrightarrow 3a^2-8xa+4x^2=0\)

\(\Leftrightarrow (a-2x)(3a-2x)=0\) \(\Rightarrow \left[\begin{matrix} a=2x\\ 3a=2x\end{matrix}\right.\)

Nếu \(a=\sqrt{2x^2-3x+1}=2x\Rightarrow \left\{\begin{matrix} x\geq 0\\ 2x^2-3x+1=4x^2\end{matrix}\right.\)

\(\Rightarrow \left\{\begin{matrix} x\geq 0\\ 2x^2+3x-1=0\end{matrix}\right.\Rightarrow x=\frac{-3+\sqrt{17}}{4}\) (t/m)

Nếu \(3a=3\sqrt{2x^2-3x+1}=2x\Rightarrow \left\{\begin{matrix} x\geq 0\\ 9(2x^2-3x+1)=4x^2\end{matrix}\right.\)

\(\Rightarrow \left\{\begin{matrix} x\geq 0\\ 14x^2-27x+9=0\end{matrix}\right.\Rightarrow x=\frac{3}{2}; x=\frac{3}{7}\) (t/m)

Vậy...........