\(x^2=\frac{1}{15}\)
b) \(\sqr...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 6 2021

a) \(x^2=\frac{1}{15}\)

\(\Leftrightarrow\sqrt{x^2}=\sqrt{\frac{1}{15}}\)

\(\Leftrightarrow\left|x\right|=\frac{1}{\sqrt{15}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{\sqrt{15}}\\x=-\frac{1}{\sqrt{15}}\end{cases}}\)

Vậy \(x=\left\{\frac{1}{\sqrt{15}};-\frac{1}{\sqrt{15}}\right\}\)

b) \(\sqrt{x}-3=\frac{1}{3}\)

\(\Leftrightarrow\sqrt{x}=\frac{10}{3}\)

\(\Leftrightarrow\sqrt{x}=\sqrt{\left(\frac{10}{3}\right)^2}\)

\(\Leftrightarrow x=\left(\frac{10}{3}\right)^2\)

\(\Leftrightarrow x=\frac{100}{9}\)

Vậy  \(x=\left\{\frac{100}{9}\right\}\)

NM
19 tháng 7 2021

a. ĐKXĐ: 

\(\hept{\begin{cases}\sqrt{x}-1\ne0\\x-\sqrt{x}\ne0\\x\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x>0\\x\ne1\end{cases}}}\)

b. ta có \(A=\frac{\sqrt{x}}{\sqrt{x}-1}-\frac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}=\frac{x-1}{\sqrt{x}.\left(\sqrt{x}-1\right)}=\frac{\sqrt{x}+1}{\sqrt{x}}\)

c. khi \(x=\frac{1}{4}\Rightarrow\sqrt{x}=\frac{1}{2}\Rightarrow A=\frac{\frac{1}{2}+1}{\frac{1}{2}}=3\)

khi \(x=3+2\sqrt{2}\Rightarrow\sqrt{x}=\sqrt{2}+1\Rightarrow A=\frac{\sqrt{2}+1+1}{\sqrt{2}+1}=\sqrt{2}\)

19 tháng 7 2021

\(a,ĐKXĐ:A=x\ge0;x\ne1\)

\(b,A=\frac{\sqrt{x}}{\sqrt{x}-1}-\frac{1}{x-\sqrt{x}}\)

\(A=\frac{\sqrt{x}}{\sqrt{x}-1}-\frac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}\)

\(A=\frac{x-1}{\sqrt{x}\left(\sqrt{x}-1\right)}\)

\(A=\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}\)

\(A=\frac{\sqrt{x}+1}{\sqrt{x}}< =>ĐPCM\)

c,thay \(x=\frac{1}{4}\)vào A

\(c,A=\frac{\sqrt{\frac{1}{4}}+1}{\sqrt{\frac{1}{4}}}\)

\(A=\frac{\frac{1}{2}+1}{\frac{1}{2}}\)

\(A=3\)

\(x=3+2\sqrt{2}\)

\(x=\sqrt{2}^2+2\sqrt{2}+1\)

\(x=\left(\sqrt{2}+1\right)^2\)thay x vào A

\(A=\frac{\sqrt{\left(\sqrt{2}+1\right)^2}+1}{\sqrt{\left(\sqrt{2}+1\right)^2}}\)

\(A=\frac{\sqrt{2}+1+1}{\sqrt{2}+1}\)

\(A=\frac{2+\sqrt{2}}{\sqrt{2}+1}\)

\(A=\frac{\sqrt{2}\left(\sqrt{2}+1\right)}{\sqrt{2}+1}=\sqrt{2}\)

15 tháng 8 2021

a, Với x > 0 

\(B=\frac{\sqrt{x}-1}{\sqrt{x}}+\frac{1}{x+\sqrt{x}}=\frac{x-1+1}{x+\sqrt{x}}=\frac{x}{\sqrt{x}\left(\sqrt{x}+1\right)}=\frac{\sqrt{x}}{\sqrt{x}+1}\)

b, Ta có : \(A>\frac{2}{3}\Rightarrow\frac{\sqrt{x}}{\sqrt{x}+1}-\frac{2}{3}>0\Leftrightarrow\frac{3\sqrt{x}-2\sqrt{x}-2}{3\left(\sqrt{x}+1\right)}>0\)

\(\Rightarrow\sqrt{x}-2>0\Leftrightarrow x>4\)

c, \(\frac{A}{B}=\frac{\sqrt{x}}{\sqrt{x}+1}.\frac{\sqrt{x}+3}{2\sqrt{x}}=\frac{\sqrt{x}+3}{2\sqrt{x}+2}=\frac{2\sqrt{x}+6}{2\sqrt{x}+2}=1+\frac{4}{2\sqrt{x}+2}=1+\frac{2}{\sqrt{x}+1}\)

\(\Rightarrow\sqrt{x}+1\inƯ\left(2\right)=\left\{1;2\right\}\)

\(\sqrt{x}+1\)12
\(\sqrt{x}\)0 (loại )1
xloại1
2 tháng 8 2021

\(B=\frac{3\sqrt{x}+1}{x+2\sqrt{x}-3}-\frac{2}{\sqrt{x}+3}\)

\(=\frac{3\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}-\frac{2\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)

\(=\frac{\sqrt{x}+3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}=\frac{1}{\sqrt{x}-1}\)

b) \(\frac{A}{B}=\frac{\sqrt{x}+4}{\sqrt{x-1}}:\frac{1}{\sqrt{x}-1}=\sqrt{x}+4\)

Để \(\frac{A}{B}\ge\frac{x}{4}+5\)

\(\Leftrightarrow\sqrt{x}+4\ge\frac{x}{4}+5\)

\(\Leftrightarrow4\sqrt{x}+16\ge x+20\)

\(\Leftrightarrow x-4\sqrt{x}+4\le0\)

\(\Leftrightarrow\left(\sqrt{x}-2\right)^2\le0\)

Mà \(\left(\sqrt{x}-2\right)^2\ge0;\forall x\ge0\)

\(\Rightarrow\left(\sqrt{x}-2\right)^2=0\)

\(\Leftrightarrow x=4\)

Vậy ...

12 tháng 8 2021

a, \(A=\left(\frac{1}{\sqrt{x}+2}-\frac{1}{\sqrt{x}-2}\right):\frac{-\sqrt{x}}{x-2\sqrt{x}}\)

\(A=\left(\frac{\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}-\frac{\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\right):\frac{-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-2\right)}\)

\(A=\frac{\sqrt{x}-2-\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\cdot\frac{-\sqrt{x}\left(\sqrt{x}-2\right)}{\sqrt{x}}\)

\(A=\frac{4}{\sqrt{x}+2}\)

b, \(A=\frac{4}{\sqrt{x}+2}=\frac{2}{3}\)

=> 2cawn x + 4 = 12

=> 2.căn x = 8

=> căn x = 4

=> x = 16 (thỏa mãn)

c, có A = 4/ căn x + 2 và B  = 1/căn x - 2

=> A.B = 4/x - 4 

mà AB nguyên

=> 4 ⋮ x - 4

=> x - 4 thuộc Ư(4) 

=> x - 4 thuộc {-1;1;-2;2;-4;4}

=> x thuộc {3;5;2;6;0;8} mà x > 0 và x khác 4

=> x thuộc {3;5;2;6;8}

d, giống c thôi

12 tháng 8 2021

\(Q=\frac{\sqrt{x}-1}{\sqrt{x}+2}-\frac{5\sqrt{x}-2}{x-4}\)

\(Q=\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}-\frac{5\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)

\(Q=\frac{x-3\sqrt{x}-2-5\sqrt{x}+2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)

\(Q=\frac{x-8\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x+2}\right)}\)

ủa sao không thấy gọn ta

12 tháng 8 2021

đk  x khác 9, x >= 0

\(p=\frac{\sqrt{x}-1}{\sqrt{x}-3}-\frac{5\sqrt{x}-3}{x-9}\)

\(p=\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x+3}\right)}-\frac{5\sqrt{x}-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)

\(p=\frac{x+2\sqrt{x}-3-5\sqrt{x}+3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)

\(p=\frac{x-3\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=\frac{\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)

\(p=\frac{\sqrt{x}}{\sqrt{x}+3}\)

b, P.(căn x + 3) = |x - 2|

có P = căn x/ căn x + 3

=> căn x = |x - 2|

=> x = |x - 2|^2

=> x = x^2 - 4x + 4

=> x^2 - 5x + 4 = 0

=> (x-1)(x-4) = 0

=> x = 1 hoặc x = 4 (tm)

vậy x = 1 hoặc x = 4

25 tháng 2 2022

Với x >= 0 ; x khác  9 

\(B=\frac{2x-6\sqrt{x}+x+3\sqrt{x}-3x-3}{x-9}=\frac{-3\sqrt{x}-3}{x-9}=\frac{-3\left(\sqrt{x}+1\right)}{x-9}\)

\(\frac{B}{A}=\frac{-3\left(\sqrt{x}+1\right)}{x-9}:\frac{\sqrt{x}+1}{\sqrt{x}-3}=\frac{-3}{\sqrt{x}+3}+\frac{1}{2}< 0\)

\(\Leftrightarrow\frac{-6+\sqrt{x}+3}{2\left(\sqrt{x}+3\right)}< 0\Rightarrow\sqrt{x}-3< 0\Leftrightarrow x< 9\)

Kết hợp đk vậy 0 =< x < 9 

7 tháng 9 2021

mấy bài này thì bạn cứ đặt ẩn phụ cho dễ nhìn hơn mà giải nhé 

a, \(\hept{\begin{cases}\frac{1}{2x-y}+x+3y=\frac{3}{2}\\\frac{4}{2x-y}-5\left(x+3y\right)=-3\end{cases}}\)ĐK : \(2x\ne y\)

Đặt \(\frac{1}{2x-y}=t;x+3y=u\)hệ phương trình tương đương 

\(\hept{\begin{cases}t+u=\frac{3}{2}\\4t-5u=-3\end{cases}\Leftrightarrow\hept{\begin{cases}4t+4u=6\\4t-5u=-3\end{cases}}\Leftrightarrow\hept{\begin{cases}9u=9\\4t=-3+5u\end{cases}}\Leftrightarrow\hept{\begin{cases}u=1\\t=\frac{-3+5}{4}=\frac{1}{2}\end{cases}}}\)

Theo cách đặt \(\hept{\begin{cases}x+3y=1\\\frac{1}{2x-y}=\frac{1}{2}\end{cases}\Leftrightarrow\hept{\begin{cases}x+3y=1\\2x-y=2\end{cases}}\Leftrightarrow\hept{\begin{cases}2x+6y=2\\2x-y=2\end{cases}\Leftrightarrow}\hept{\begin{cases}7y=4\\x=\frac{y+2}{2}\end{cases}\Leftrightarrow}\hept{\begin{cases}y=\frac{4}{7}\\x=\frac{9}{7}\end{cases}}}\)

Vậy hệ pt có một nghiệm (x;y) = (9/7;4/7) 

1 tháng 8 2021

bổ sung thêm đề bài là \(x\ge0;x\ne25\) nha

1 tháng 8 2021

\(a,B=\left(\frac{15-\sqrt{x}}{x-25}+\frac{2}{\sqrt{x}+5}\right):\frac{\sqrt{x}+1}{\sqrt{x}-5}\)

\(B=\left(\frac{15-\sqrt{x}+2\sqrt{x}-10}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}\right).\frac{\sqrt{x}-5}{\sqrt{x}+1}\)

\(B=\frac{5+\sqrt{x}}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}\frac{\sqrt{x}-5}{\sqrt{x}+1}\)

\(B=\frac{1}{\sqrt{x}+1}\)

\(b,P=A.B=\frac{4\left(\sqrt{x}+1\right)}{25-x}.\frac{1}{\sqrt{x}+1}\)

\(P=\frac{4}{25-x}\)

bổ sung điều kiện cho câu b là x nguyên

\(TH1:x>25< =>P< 0\left(KTM\right)\)

\(TH2:x< 25< =>P>0\)mà x nguyên

\(\frac{4}{25-x}\le4\)

dấu "=" xảy ra khi \(x=24\)

\(< =>MAX:P=4\)