\(^{2x^2}\)
           c,...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 8 2016

b) \(\left(2x-3\right)\left(x-1\right)=2x^2\)

<=> \(2x^2-5x+3=2x^2\)

<=> x=3/5

c) \(\left(\frac{1}{2}x+3\right)\left(\frac{2}{3}-x\right)=\frac{x^2}{2}+1\)

<=> \(\frac{1}{3x}-\frac{1}{2}x^2+2-3x=\frac{x^2}{2}+1\)

<=> \(x^2+\frac{8}{3}x-1=0\)

<=> \(\left[\begin{array}{nghiempt}x=-3\\x=\frac{1}{3}\end{array}\right.\)

12 tháng 8 2016

Tìm x: a, (x-1)(x+1)-2x=0

<=> \(x^2-1-2x=0\)

<=> \(x=1\pm\sqrt{2}\)

KL: có 2 nghiệm ...
           b, (2x-3)(x-1)=2x2

<=> \(2x^2-5x+3=2x^2\)

<=> \(x=\frac{3}{5}\)

            c) \(\left(\frac{1}{2}x+3\right)\left(\frac{2}{3}-x\right)=\frac{x^2}{2}+1\)

<=> \(\frac{1}{3}x-\frac{1}{2}x^2+2-3x=\frac{x^2}{2}+1\)

<=> \(x^2+\frac{8}{3}x-1=0\)

<=> \(\left[\begin{array}{nghiempt}x=-3\\x=\frac{1}{3}\end{array}\right.\)

KL: có 2 nghiệm ..
       

21 tháng 7 2016

a)2x-5/x+5=3=>2x-5=3(x+5)=3x+15

=>2x=3x+20=>x=-20

b)(x^2-6)/x=x+3/2

=>(x^2-6)/x - x=3/2

=>-6/x[quy đồng]=3/2

=>x=-4

c)Để (x^2+2x)(3x+6)/x3=0

thì  (x^2+2x)(3x+6)=0

=x(x+2)-3(x+2)=(x-3)(x+2)=0

=>x=3 hoặc x=-2

Mà ở mẫu có x-3 nếu x=3 thì mẫu =0=>loại

Vậy x=2

d)5/3x+2=2x1

=>5=(3x+2)(2x-1)

Tìm ước của 5 rùi thay vào 3x+2 và 2x-1 rùi tìm x,cái đó dễ nên bn tự lm nhé

e)

(2x1/x1)+1=1/x1

=>1/x-1-2x-1/x-1=1

=>-2x/x-1=1

=>-2x=x-1

=>x=1/3

g)(x+3/x+1)+(x2/x)=2

=>quy đồng rùi tính và tìm x nhé bn,mk mỏi tay rùi

nhớ tick cho mk nha,mk siêng lắm ms ghi cho bn nhiều thế này nè,nhớ tick nha,thanks

21 tháng 7 2016

a)  \(\frac{2x-5}{x+5}=3\)

  \(\Leftrightarrow2x-5=3\left(x+5\right)\)

  \(\Leftrightarrow2x-5=3x+15\)

  \(\Leftrightarrow2x-3x=15+5\)

  \(\Leftrightarrow-x=20\\ \)

   \(\Leftrightarrow x=-20\)

b) \(\frac{x^2-6}{x}=x+\frac{3}{2}\)

  \(\Leftrightarrow\frac{x^2-6}{x}=\frac{2x+3}{2}\)

  \(\Leftrightarrow2\left(x^2-6\right)=x\left(2x+3\right)\)

  \(\Leftrightarrow2x^2-12=2x^2+3x\)

  \(\Leftrightarrow3x=-12\)

  \(\Leftrightarrow x=-4\) 

c) \(\frac{\left(x^2+2x\right)-\left(3x+6\right)}{x-3}=0\)

  \(\Leftrightarrow\frac{x\left(x+2\right)-3\left(x+2\right)}{x-3}=0\)

  \(\Leftrightarrow\frac{\left(x+2\right)\left(x-3\right)}{x-3}=0\)

  \(\Leftrightarrow x+2=0\)

  \(\Leftrightarrow x=-2\)

d)  \(\frac{5}{3x+2}=2x-1\)

 \(\Leftrightarrow5=\left(2x-1\right)\left(3x+2\right)\)

 \(\Leftrightarrow5=6x^2+x-2\)

 \(\Leftrightarrow6x^2+x-7=0\)

 \(\Leftrightarrow\left[\begin{array}{nghiempt}1\\\frac{-7}{6}\end{array}\right.\)

e)  \(\frac{2x-1}{x-1}+1=\frac{1}{x-1}\)

   \(\Leftrightarrow2x-1+x-1=1\)

   \(\Leftrightarrow3x=3\)

   \(\Leftrightarrow x=1\)

g) \(\frac{x+3}{x+1}+\frac{x-2}{x}=2\)

  \(\Leftrightarrow\frac{x\left(x+3\right)}{x\left(x+1\right)}+\frac{\left(x-2\right)\left(x+1\right)}{x\left(x+1\right)}=\frac{2x\left(x+1\right)}{x\left(x+1\right)}\)

  \(\Leftrightarrow x\left(x+3\right)+\left(x-2\right)\left(x+1\right)=2x\left(x+1\right)\)

  \(\Leftrightarrow x^2+3x+x^2-x-2=2x^2+2x\)

  \(\Leftrightarrow2x-2x-2=0\)

  \(\Leftrightarrow-2=0\)    \(\Rightarrow\)Phương trình vô nghiệm 

 

 

 

a) Ta có: \(\frac{\left(2x+1\right)^2}{5}-\frac{\left(x-1\right)^2}{3}=\frac{7x^2-14x-5}{15}\)

\(\Leftrightarrow\frac{\left(2x+1\right)^2\cdot3}{15}-\frac{5\left(x-1\right)^2}{15}-\frac{7x^2-14x-5}{15}=0\)

\(\Leftrightarrow3\left(4x^2+4x+1\right)-5\left(x^2-2x+1\right)-7x^2+14x+5=0\)

\(\Leftrightarrow12x^2+12x+3-5x^2+10x-5-7x^2+14x+5=0\)

\(\Leftrightarrow36x+3=0\)

\(\Leftrightarrow36x=-3\)

\(\Leftrightarrow x=\frac{-3}{36}\)

Vậy: \(x=\frac{-3}{36}\)

b) Ta có: \(\frac{201-x}{99}+\frac{203-x}{97}=\frac{205-x}{95}+3=0\)

\(\Leftrightarrow\frac{201-x}{99}+\frac{203-x}{97}-\frac{205-x}{95}-3=0\)

\(\Leftrightarrow\left(\frac{201-x}{99}+1\right)+\left(\frac{203-x}{97}+1\right)+\left(\frac{205-x}{95}+1\right)=0\)

\(\Leftrightarrow\frac{201-x+99}{99}+\frac{203-x+97}{97}+\frac{205-x+95}{95}=0\)

\(\Leftrightarrow\frac{300-x}{99}+\frac{300-x}{97}+\frac{300-x}{95}=0\)

\(\Leftrightarrow\left(300-x\right)\left(\frac{1}{99}+\frac{1}{97}+\frac{1}{95}\right)=0\)

\(\frac{1}{99}+\frac{1}{97}+\frac{1}{95}\ne0\)

nên 300-x=0

\(\Leftrightarrow x=300\)

Vậy: x=300

c) Ta có: \(x^3+x^2+x+1=0\)

\(\Leftrightarrow x^2\left(x+1\right)+\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x^2+1\right)=0\)(1)

Ta có: \(x^2\ge0\forall x\)

\(\Rightarrow x^2+1\ge1\ne0\forall x\)(2)

Từ (1) và (2) suy ra x+1=0

hay x=-1

Vậy: x=-1

d) Ta có: \(\left(x-1\right)x\left(x+1\right)\left(x+2\right)=24\)

\(\Leftrightarrow\left(x^2+x\right)\left(x^2+x-2\right)=24\)

Đặt \(x^2+x-1=t\)

\(\Leftrightarrow\left(t+1\right)\left(t-1\right)=24\)

\(\Leftrightarrow t^2-1-24=0\)

\(\Leftrightarrow t^2-25=0\)

\(\Leftrightarrow\left(t-5\right)\left(t+5\right)=0\)

\(\Leftrightarrow\left(x^2+x-1-5\right)\left(x^2+x-1+5\right)=0\)

\(\Leftrightarrow\left(x^2+x-6\right)\left(x^2+x+4\right)=0\)

\(\Leftrightarrow\left(x^2+3x-2x-6\right)\left(x^2+2\cdot x\cdot\frac{1}{2}+\frac{1}{4}+\frac{15}{4}\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left(x-2\right)\left[\left(x+\frac{1}{2}\right)^2+\frac{15}{4}=0\right]\)(3)

Ta có: \(\left(x+\frac{1}{2}\right)^2\ge0\forall x\)

\(\Rightarrow\left(x+\frac{1}{2}\right)^2+\frac{15}{4}\ge\frac{15}{4}\ne0\forall x\)(4)

Từ (3) và (4) suy ra

\(\left[{}\begin{matrix}x+3=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=2\end{matrix}\right.\)

Vậy: \(x\in\left\{-3;2\right\}\)

e) Ta có: \(\left(5x-3\right)-\left(4x-7\right)=0\)

\(\Leftrightarrow5x-3-4x+7=0\)

\(\Leftrightarrow x+4=0\)

\(\Leftrightarrow x=-4\)

Vậy: x=-4

f) Ta có: \(3x^2+2x-1=0\)

\(\Leftrightarrow3x^2+3x-x-1=0\)

\(\Leftrightarrow3x\left(x+1\right)-\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(3x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\3x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\3x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=\frac{1}{3}\end{matrix}\right.\)

Vậy: \(x\in\left\{-1;\frac{1}{3}\right\}\)

g) Ta có: \(x^2+6x-16=0\)

\(\Leftrightarrow x^2-2x+8x-16=0\)

\(\Leftrightarrow x\left(x-2\right)+8\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+8\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x+8=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-8\end{matrix}\right.\)

Vậy: \(x\in\left\{2;-8\right\}\)

h) Ta có: \(x^2+3x-10=0\)

\(\Leftrightarrow x^2+5x-2x-10=0\)

\(\Leftrightarrow x\left(x+5\right)-2\left(x+5\right)=0\)

\(\Leftrightarrow\left(x+5\right)\left(x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+5=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=2\end{matrix}\right.\)

Vậy: \(x\in\left\{-5;2\right\}\)

i) Ta có: \(x^2+x-2=0\)

\(\Leftrightarrow x^2-x+2x-2=0\)

\(\Leftrightarrow x\left(x-1\right)+2\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)

Vậy: \(x\in\left\{1;-2\right\}\)

k) Ta có: \(3x^2+7x+2=0\)

\(\Leftrightarrow3x^2+6x+x+2=0\)

\(\Leftrightarrow3x\left(x+2\right)+\left(x+2\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(3x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+2=0\\3x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\3x=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=\frac{-1}{3}\end{matrix}\right.\)

Vậy: \(x\in\left\{-2;\frac{-1}{3}\right\}\)

l) Ta có: \(4x^2-12x+5=0\)

\(\Leftrightarrow4x^2-2x-10x+5=0\)

\(\Leftrightarrow2x\left(2x-1\right)-5\left(2x-1\right)=0\)

\(\Leftrightarrow\left(2x-1\right)\left(2x-5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-1=0\\2x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=1\\2x=5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{1}{2}\\x=\frac{5}{2}\end{matrix}\right.\)

Vậy: \(x\in\left\{\frac{1}{2};\frac{5}{2}\right\}\)

12 tháng 12 2016

\(A=\left(\frac{x-2}{2x-2}+\frac{3}{2x-2}-\frac{x+3}{2x+2}\right):\left(-1-\frac{x-3}{x+1}\right)\)

\(=\left(\frac{x-2}{2\left(x-1\right)}+\frac{3}{2\left(x-1\right)}+\frac{-\left(x+3\right)}{2\left(x+1\right)}\right):\left(-\frac{1}{1}+\frac{-\left(x-3\right)}{x+1}\right)\)

\(=\left(\frac{\left(x-2\right)\left(x+1\right)+3\left(x+1\right)-\left(x+3\right)\left(x-1\right)}{2\left(x-1\right)\left(x+1\right)}\right):\left(\frac{-1\left(x+1\right)-\left(x-3\right)}{x+1}\right)\)

\(=\left(\frac{x^2-x^2+x+3x-2x-6+3+3}{2\left(x-1\right)\left(x+1\right)}\right):\left(\frac{x-1-x+3}{x+1}\right)\)

=\(=\frac{2x}{2\left(x-1\right)\left(x+1\right)}:\frac{2}{x+1}\)

\(=\frac{2x}{2\left(x-1\right)\left(x+1\right)}.\frac{x+1}{2}\)

\(=\frac{x}{2\left(x-1\right)}\)

b,Thayx=2005

\(\Rightarrow A=\frac{2005}{4008}\)

3 tháng 3 2020

\(a,\left(2x^2+1\right)+4x>2x\left(x-2\right)\)

\(\Leftrightarrow2x^2+1+4x>2x^2-4x\)

\(\Leftrightarrow4x+4x>-1\)

\(\Leftrightarrow8x>-1\)

\(\Leftrightarrow x>-\frac{1}{8}\)

\(b,\left(4x+3\right)\left(x-1\right)< 6x^2-x+1\)

\(\Leftrightarrow4x^2-4x+3x-3< 6x^2-x+1\)

\(\Leftrightarrow4x^2-x-3< 6x^2-x+1\)

\(\Leftrightarrow4x^2-6x^2< 1+3\)

\(\Leftrightarrow-2x^2< 4\)

\(\Leftrightarrow x^2>2\)

\(\Leftrightarrow x>\pm\sqrt{2}\)

6 tháng 3 2020

a) \(4\left(x-3\right)^2=9\left(2-3x\right)^2\)

\(\Leftrightarrow\left(2x-6\right)^2=\left(6-9x\right)^2\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-6=6-9x\\2x-6=9x-6\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}11x=12\\7x=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{12}{11}\\x=0\end{matrix}\right.\)

Vậy tập nghiệm của phương trình là \(S=\left\{\frac{12}{11};0\right\}\)

b) \(ĐKXĐ:x\ne\pm1\)

\(\frac{x+1}{x-1}+\frac{x^2+3x-2}{1-x^2}=\frac{x-1}{x+1}\)

\(\Leftrightarrow\frac{x+1}{x-1}-\frac{x^2+3x-2}{x^2-1}-\frac{x-1}{x+1}=0\)

\(\Leftrightarrow\frac{\left(x+1\right)^2-x^2-3x+2-\left(x-1\right)^2}{x^2-1}=0\)

\(\Leftrightarrow\frac{x^2+2x+1-x^2-3x+2-x^2+2x-1}{x^2-1}=0\)

\(\Leftrightarrow-x^2+x+2=0\)

\(\Leftrightarrow x^2-x-2=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x+1=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\left(tm\right)\\x=-1\left(ktm\right)\end{matrix}\right.\)

Vậy tập nghiệm của phương trình là \(S=\left\{2\right\}\)

10 tháng 3 2020

Cậu làm rõ từng bước của câu a giùm tớ với