Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left(\frac{x-2}{2x-2}+\frac{3}{2x-2}-\frac{x+3}{2x+2}\right):\left(-1-\frac{x-3}{x+1}\right)\)
\(=\left(\frac{x-2}{2\left(x-1\right)}+\frac{3}{2\left(x-1\right)}+\frac{-\left(x+3\right)}{2\left(x+1\right)}\right):\left(-\frac{1}{1}+\frac{-\left(x-3\right)}{x+1}\right)\)
\(=\left(\frac{\left(x-2\right)\left(x+1\right)+3\left(x+1\right)-\left(x+3\right)\left(x-1\right)}{2\left(x-1\right)\left(x+1\right)}\right):\left(\frac{-1\left(x+1\right)-\left(x-3\right)}{x+1}\right)\)
\(=\left(\frac{x^2-x^2+x+3x-2x-6+3+3}{2\left(x-1\right)\left(x+1\right)}\right):\left(\frac{x-1-x+3}{x+1}\right)\)
=\(=\frac{2x}{2\left(x-1\right)\left(x+1\right)}:\frac{2}{x+1}\)
\(=\frac{2x}{2\left(x-1\right)\left(x+1\right)}.\frac{x+1}{2}\)
\(=\frac{x}{2\left(x-1\right)}\)
b,Thayx=2005
\(\Rightarrow A=\frac{2005}{4008}\)
Câu 1:
\(Tacó\)
\(\frac{2}{2x-1}+\frac{4x^2+1}{4x^2-1}-\frac{1}{2x+1}=\frac{2}{2x-1}+\frac{4x^2+1}{\left(2x+1\right)\left(2x-1\right)}-\frac{1}{2x+1}\)
\(=\frac{4x+2}{\left(2x+1\right)\left(2x-1\right)}+\frac{4x^2+1}{\left(2x+1\right)\left(2x-1\right)}-\frac{2x-1}{\left(2x+1\right)\left(2x-1\right)}\)
\(=\frac{4x+2+4x^2+1-2x+1}{\left(2x+1\right)\left(2x-1\right)}=\frac{2x\left(2x+1\right)+4}{\left(2x+1\right)\left(2x-1\right)}=\frac{2x+4}{2x-1}\)
\(b,x=\frac{1}{2}\Rightarrow2x-1=0\left(loại\right)\)
..... 2 câu sau easy
a) Để giá trị biểu thức 5 – 2x là số dương
<=> 5 – 2x > 0
<=> -2x > -5 ( Chuyển vế và đổi dấu hạng tử 5 )
\(\Leftrightarrow x< \frac{5}{2}\)( Chia cả 2 vế cho -2 < 0 ; BPT đổi chiều )
Vậy : \(x< \frac{5}{2}\)
b) Để giá trị của biểu thức x + 3 nhỏ hơn giá trị biểu thức 4x - 5 thì:
x + 3 < 4x – 5
<=< x – 4x < -3 – 5 ( chuyển vế và đổi dấu các hạng tử 4x và 3 )
<=> -3x < -8
\(\Leftrightarrow x>\frac{8}{3}\)( Chia cả hai vế cho -3 < 0, BPT đổi chiều).
Vậy : \(x>\frac{8}{3}\)
c) Để giá trị của biểu thức 2x +1 không nhỏ hơn giá trị của biểu thức x + 3 thì:
2x + 1 ≥ x + 3
<=> 2x – x ≥ 3 – 1 (chuyển vế và đổi dấu các hạng tử 1 và x).
<=> x ≥ 2.
Vậy x ≥ 2.
d) Để giá trị của biểu thức x2 + 1 không lớn hơn giá trị của biểu thức (x - 2)2 thì:
x2 + 1 ≤ (x – 2)2
<=> x2 + 1 ≤ x2 – 4x + 4
<=> x2 – x2 + 4x ≤ 4 – 1 ( chuyển vế và đổi dấu hạng tử 1; x2 và – 4x).
<=> 4x ≤ 3
\(\Leftrightarrow x\le\frac{3}{4}\)( Chia cả 2 vế cho 4 > 0 )
Vậy : \(x\le\frac{3}{4}\)
a) xác định khi x khác +-1
b)
\(A=\left(\frac{\left(2x+1\right).\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}+\frac{8}{\left(x-1\right)\left(x+1\right)}-\frac{\left(x-1\right)\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}\right).\frac{\left(x-1\right)}{\left(x+1\right)}\)
\(A=\left(\frac{\left(2x^2+3x+1\right)+8-\left(x^2-2x+1\right)}{\left(x-1\right)\left(x+1\right)}\right).\frac{\left(x-1\right)}{\left(x+1\right)}=\frac{x^2+5x+8}{\left(x-1\right)\left(x+1\right)}.\frac{x-1}{x+1}\)
\(A=\frac{x^2+5x+8}{\left(x+1\right)^2}=1+\frac{3\left(x+1\right)+4}{\left(x+1\right)^2}\)
c)
GTNN \(B=\frac{3y+4}{y^2}\ge-\frac{9}{16}\)
GTNN \(A=\frac{7}{16}\)
a) \(A=\frac{2x}{x^2-9}+\frac{5}{3-x}-\frac{1}{x+3}\)
\(\Leftrightarrow A=\frac{2x}{\left(x-3\right)\left(x+3\right)}-\frac{5}{x-3}-\frac{1}{x+3}\)
\(\Leftrightarrow A=\frac{2x-5\left(x+3\right)-x+3}{\left(x-3\right)\left(x+3\right)}\)
\(\Leftrightarrow A=\frac{2x-5x-15-x+3}{\left(x-3\right)\left(x+3\right)}\)
\(\Leftrightarrow A=\frac{-4x-12}{\left(x-3\right)\left(x+3\right)}\)
\(\Leftrightarrow A=\frac{-4\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}=\frac{-4}{x-3}\)
b) x = \(\frac{-3}{2}\) ( thỏa mãn )
Vậy với x= \(\frac{-3}{2}\) thì giá trị của biểu thức A bằng \(\frac{-4}{\frac{-3}{2}-3}=\frac{-4}{\frac{-9}{2}}=\left(-4\right)\left(\frac{-2}{9}\right)=\frac{8}{9}\)
c) A là số nguyên
\(\Leftrightarrow\frac{-4}{x-3}\)nguyên
\(\Leftrightarrow x-3=Ư\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
Ta có bảng sau :
x-3 | 1 | -1 | 2 | -2 | 4 | -4 |
x | 4 | 2 | 5 | 1 | 7 | -1 |
Vậy.................