K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 7 2017

a) \(\Rightarrow6x-2-4-12x=16\)

\(\Rightarrow-6x-6=16\)

\(\Rightarrow-6x=22\)

\(\Rightarrow x=\frac{-11}{3}\)

b) \(\Rightarrow2x^2-2x-3x^2+12x+x^2+2x=-3\)

\(\Rightarrow14x=-3\)

\(\Rightarrow x=\frac{-3}{14}.\)

a: Ta có: \(\left(x-1\right)^3+\left(2-x\right)\left(4+2x+x^2\right)+3x\left(x+2\right)=16\)

\(\Leftrightarrow x^3-3x^2+3x-1+8-x^3+3x^2+6x=16\)

\(\Leftrightarrow9x+7=16\)

\(\Leftrightarrow9x=9\)

hay x=1

 

14 tháng 10 2021

1: Ta có: \(\left(x+3\right)^2-\left(x+2\right)\left(x-2\right)=4x+17\)

\(\Leftrightarrow x^2+6x+9-x^2+4-4x=17\)

\(\Leftrightarrow x=2\)

3: Ta có: \(\left(2x+3\right)\left(x-1\right)+\left(2x-3\right)\left(1-x\right)=0\)

\(\Leftrightarrow2x^2-2x+3x-3+2x-2x^2-3+3x=0\)

\(\Leftrightarrow6x=6\)

hay x=1

AH
Akai Haruma
Giáo viên
12 tháng 8 2023

Tìm min:

$F=3x^2+x-2=3(x^2+\frac{x}{3})-2$

$=3[x^2+\frac{x}{3}+(\frac{1}{6})^2]-\frac{25}{12}$

$=3(x+\frac{1}{6})^2-\frac{25}{12}\geq \frac{-25}{12}$

Vậy $F_{\min}=\frac{-25}{12}$. Giá trị này đạt tại $x+\frac{1}{6}=0$
$\Leftrightarrow x=\frac{-1}{6}$

AH
Akai Haruma
Giáo viên
12 tháng 8 2023

Tìm min

$G=4x^2+2x-1=(2x)^2+2.2x.\frac{1}{2}+(\frac{1}{2})^2-\frac{5}{4}$

$=(2x+\frac{1}{2})^2-\frac{5}{4}\geq 0-\frac{5}{4}=\frac{-5}{4}$ (do $(2x+\frac{1}{2})^2\geq 0$ với mọi $x$)

Vậy $G_{\min}=\frac{-5}{4}$. Giá trị này đạt tại $2x+\frac{1}{2}=0$

$\Leftrightarrow x=\frac{-1}{4}$

6 tháng 10 2021

\(a,=\left(3x-5\right)\left(3x+3\right)=3\left(x+1\right)\left(3x-5\right)\\ b,=\left(5x-4-7x\right)\left(5x-4+7x\right)=\left(-2x-4\right)\left(12x-4\right)\\ =-8\left(x+2\right)\left(x-3\right)\\ c,=\left(2x+5-x+9\right)\left(2x+5+x-9\right)\\ =\left(x+14\right)\left(3x-4\right)\\ d,=\left(3x+1-2x+4\right)\left(3x+1+2x-4\right)\\ =\left(x+5\right)\left(5x-3\right)\\ e,=\left(6x+9-2x-2\right)\left(6x+9+2x+2\right)\\ =\left(4x+7\right)\left(8x+11\right)\\ f,=\left(2bc-b^2-c^2+a^2\right)\left(2bc+b^2+c^2-a^2\right)\\ =\left[a^2-\left(b-c\right)^2\right]\left[\left(b+c\right)^2-a^2\right]\\ =\left(a-b+c\right)\left(a+b-c\right)\left(b+c-a\right)\left(b+c+a\right)\\ g,=\left(ax+by-ay-bx\right)\left(ax+by+ay+bx\right)\\ =\left(a-b\right)\left(x-y\right)\left(a+b\right)\left(x+y\right)\)

\(h,=\left(a^2+b^2-5-2ab-4\right)\left(a^2+b^2-5+2ab+4\right)\\ =\left[\left(a-b\right)^2-9\right]\left[\left(a+b\right)^2-1\right]\\ =\left(a-b-3\right)\left(a-b+3\right)\left(a+b-1\right)\left(a+b+1\right)\)

a: \(\left(3x-1\right)^2-16\)

\(=\left(3x-1-4\right)\left(3x-1+4\right)\)

\(=\left(3x+3\right)\left(3x-5\right)\)

\(=3\left(x+1\right)\left(3x-5\right)\)

b: \(\left(5x-4\right)^2-49x^2\)

\(=\left(5x-4-7x\right)\left(5x-4+7x\right)\)

\(=\left(-2x-4\right)\left(12x-4\right)\)

\(=-8\left(x+2\right)\left(3x-1\right)\)

31 tháng 8 2015

Rút gọn hết ta được :

a/ 41x - 17 = -21

=> 41x = -4 => x = 4/41

b/ 34x - 17 = 0 

=> 34x = 17

=> x = 17/34 = 1/2

c/ 19x + 56 = 52 

=> 19x = -4

=> x = -4/19

d/ 20x2 - 16x - 34 = 10x2 + 3x - 34

=> 10x2 - 19x = 0

=> x(10x - 19) = 0

=> x = 0 

hoặc 10x - 19 = 0 => 10x = 19 => x = 19/10

Vậy x = 0 ; x = 19/10

2 tháng 1 2016

Rút gọn hết ta được :

a/ 41x - 17 = -21

=> 41x = -4 => x = 4/41

b/ 34x - 17 = 0

=> 34x = 17

=> x = 17/34 = 1/2

c/ 19x + 56 = 52

=> 19x = -4

=> x = -4/19

d/ 20x 2 - 16x - 34 = 10x 2 + 3x - 34

=> 10x 2 - 19x = 0

=> x(10x - 19) = 0

=> x = 0 hoặc 10x - 19 = 0

=> 10x = 19

=> x = 19/10

Vậy x = 0 ; x = 19/10 

2:

a: =>x^2+3x-4x-12-(x^2-5x+x-5)=8

=>x^2-x-12-x^2+4x+5=8

=>3x-7=8

=>3x=15

=>x=5

b: =>3x^2+3x-2x-2-3x^2-21x=13

=>-20x=15

=>x=-3/4

c: =>x^2-25-x^2-2x=9

=>-2x=25+9=34

=>x=-17

d: =>x^3-1-x^3+3x=1

=>3x-1=1

=>3x=2

=>x=2/3

29 tháng 10 2021

1. Thu gọn biểu thức - Hoc24 làm rồi mà bạn?

29 tháng 10 2021

1.

a) \(=x^2-6x+9+3x^2-15x=4x^2-21x+9\)

b) \(=9x^2+12x+4-x^2+9=8x^2+12x+13\)

2.

a) \(\Leftrightarrow x^2+8x+16-x^2+4-5=0\\ \Leftrightarrow8x=-15\\ \Leftrightarrow x=-\dfrac{15}{8}\)

b) \(\Leftrightarrow9x^2-6x+1-8x^2+12x-2x+3-5-x^2=0\\ \Leftrightarrow4x=1\\ \Leftrightarrow x=\dfrac{1}{4}\)

a: ta có: \(\left(8x+2\right)\left(1-3x\right)+\left(6x-1\right)\left(4x-10\right)=-50\)

\(\Leftrightarrow8x-24x^2+2-6x+24x^2-60x-4x+40=-50\)

\(\Leftrightarrow-62x=-92\)

hay \(x=\dfrac{46}{31}\)

b: ta có: \(\left(1-4x\right)\left(x-1\right)+4\left(3x+2\right)\left(x+3\right)=38\)

\(\Leftrightarrow x-1-4x^2+4x+4\left(3x^2+9x+2x+6\right)=38\)

\(\Leftrightarrow-4x^2+5x-1+12x^2+44x+24-38=0\)

\(\Leftrightarrow8x^2+49x-15=0\)

\(\text{Δ}=49^2-4\cdot8\cdot\left(-15\right)=2881\)

Vì Δ>0 nên phương trình có hai nghiệm phân biệt là: 

\(\left\{{}\begin{matrix}x_1=\dfrac{-49-\sqrt{2881}}{16}\\x_2=\dfrac{-49+\sqrt{2881}}{16}\end{matrix}\right.\)

2 tháng 10 2021

bn ơi phần này làm áp dụng hằng đẳng thức đc k ạ