K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 7 2022

6x(x-5) + 2 (x-5) =0

2(x-5)(3x +1 ) =0

x- 5 = 0 hoặc 3x + 1 = 0

x = 5 , x = -1/3

(2x -1)2 + (x + 8)2 = không đủ dữ kiện

 

28 tháng 8 2020

Ít thôi -..-

a) ( 3x + 2 )( 2x + 9 )  - ( x + 3 )( 6x + 1 ) = ( x + 1 )2 - ( x + 2 )( x - 2 )

<=> 6x2 + 31x + 18 - ( 6x2 + 19x + 3 ) = x2 + 2x + 1 - ( x2 - 4 )

<=> 6x2 + 31x + 18 - 6x2 - 19x - 3 = x2 + 2x + 1 - x2 + 4

<=> 12x + 15 = 2x + 5

<=> 12x - 2x = 5 - 15

<=> 10x = -10

<=> x = -1

b) ( 2x + 3 )( x - 4 ) + ( x - 5 )( x - 2 ) = ( 3x - 5 )( x - 4 )

<=> 2x2 - 5x - 12 + x2 - 7x + 10 = 3x2 - 17x + 20

<=> 3x2 - 12x - 2 = 3x2 - 17x + 20

<=> 3x2 - 12x - 3x2 + 17x = 20 + 2

<=> 5x = 22

<=> x = 22/5

c) ( x + 2 )3 - ( x - 2 )3 - 12x( x - 1 ) = -8

<=> x3 + 6x2 + 12x + 8 - ( x3 - 6x2 + 12x - 8 ) - 12x2 + 12x = -8

<=>  x3 + 6x2 + 12x + 8 - x3 + 6x2 - 12x + 8 - 12x2 + 12x = -8

<=> 12x + 16 = -8

<=> 12x = -24

<=> x = -2

d) ( 3x - 1 )2 - 5( x + 1 ) + 6x - 3.2x + 1 - ( x - 1 )2 = 16

<=> 9x2 - 6x + 1 - 5x - 5 + 6x - 6x + 1 - ( x2 - 2x + 1 ) = 16

<=> 9x2 - 11x - 3 - x2 + 2x - 1 = 16

<=> 8x2 - 9x - 4 = 16

<=> 8x2 - 9x - 4 - 16 = 0

<=> 8x2 - 9x - 20 = 0

( Đến đây bạn có hai sự lựa chọn : 1 là vô nghiệm

                                                         2 là nghiệm vô tỉ =) )

28 tháng 8 2020

a) (3x + 2)(2x + 9) - (x + 3)(6x + 1) = (x + 1)2 - (x + 2)(x - 2)

=> 3x(2x + 9) + 2(2x + 9) - x(6x + 1) - 3(6x + 1) = x2 + 2x + 1 - x(x - 2) - 2(x - 2)

=> 6x2 + 27x + 4x + 18 - 6x2 - x - 18x - 3 = x2 + 2x + 1 - x2 + 2x - 2x + 4

=> (6x2 - 6x2) + (27x + 4x - x - 18x) + (18 - 3) = (x2 - x2) + (2x + 2x - 2x) + (1 + 4)

=> 12x + 15 = 2x + 5

=> 12x + 15  - 2x - 5 = 0

=> 10x + 10 = 0

=> 10x = -10 => x = -1

b) (2x + 3)(x - 4) + (x - 5)(x - 2) = (3x - 5)(x - 4)

=> 2x(x - 4) + 3(x - 4) + x(x - 2) - 5(x - 2) = 3x(x - 4) - 5(x - 4)

=> 2x2 - 8x + 3x - 12 + x2 - 2x - 5x + 10 = 3x2 - 12x - 5x + 20

=> (2x2 + x2) + (-8x + 3x - 2x - 5x) + (-12 + 10) = 3x2 - 17x + 20

=> 3x2 - 12x - 2 = 3x2 - 17x + 20

=> 3x2 - 12x - 2 - 3x2 + 17x - 20 = 0

=> (3x2 - 3x2) + (-12x + 17x) + (-2 - 20) = 0

=> 5x - 22 = 0

=> 5x = 22 => x = 22/5

c) (x + 2)3 - (x - 2)3 - 12x(x - 1) = -8

=> x3 + 6x2 + 12x + 8 - (x3  - 6x2 + 12x - 8) - 12x2 + 12x = -8

=> x3 + 6x2 + 12x + 8 -x3 + 6x2 - 12x + 8 - 12x2 + 12x = -8

=> (x3 - x3) + (6x2 + 6x2 - 12x2) + (12x - 12x + 12x) + (8 + 8) = -8

=> 12x + 16 = -8

=> 12x = -24

=> x = -2

Còn bài cuối làm nốt

(x+1)(6x2+2x)+(x-1)(6x2+2x)
<=> (6x2+2x)(x+1+x-1)
<=> 2x(3x+1)2x
<=> 4x2(3x+1)
<=> x2=0
       3x+1=0
<=> x=0
       x= -1/3 (-1 phần 3)

12 tháng 9 2016

talaays đơn thức nhân với từng hạng tử của đa thức

rồi cộng tích lại với nhau

rồi tìm x

nha bn

12 tháng 9 2016

bạn giải luôn giúp mình được không ạ?

3 tháng 8 2020

(3x-1)(2x+7)+(x+1)(6x-5)=(x+2)-(x-5)                            x (10x+9)-(5x-1)(2x+3)=8

6x^2+21x-2x-7+6x^2-5x+6x-5=x+2-x+5                          10x^2+9x-(10x^2+15x-2x-3)=8

12x^2+20x-12=7                                                            10x^2+9x-10x^2-15x+2x+3=8

12x^2+20x=19                                                                 -4x=5

x(12x+20)=19                                                                   x=-5/4

x=19 hoac x=-1/12

31 tháng 8 2017

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)

b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)

c)Đặt x-y=a;y-z=b;z-x=c

a+b+c=x-y-z+z-x=o

đưa về như bài b

d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung

e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)

=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)

22 tháng 8 2019

\(A=-x^2+2xy-4y^2+x-10y-8\)

=> \(-4A=4x^2-8xy+16y^2-4x+40y+32\)

                \(=\left(4x^2-8xy+4y^2\right)-\left(4x-4y\right)+1+12y^2+36y+31\)

                  \(=\left(2x-2y\right)^2-2\left(2x-2y\right)+1+3\left(4y^2+2.2y.3+9\right)+4\)

                   \(=\left(2x-2y+1\right)^2+3\left(2y+3\right)^2+4\ge4\)

=> \(A\le4:-4=-1\)

"=" xảy ra <=> \(\hept{\begin{cases}2x-2y+1=0\\2y+3=0\end{cases}\Leftrightarrow}\hept{\begin{cases}y=-\frac{3}{2}\\x=2\end{cases}}\)

Vậy max A=-1 <=> x=2 y=-3/2

Câu b em làm tương tự nhé!

\(a,9\left(2x+1\right)=4\left(x-5\right)^2\)

\(4x^2-40x+100=18x+9\)

\(4x^2-58x+91=0\)

\(\Rightarrow\orbr{\begin{cases}x=\frac{29+3\sqrt{53}}{4}\\x=\frac{29-3\sqrt{53}}{4}\end{cases}}\)

\(b,x^3-4x^2-12x+27=0\)

\(\left(x+3\right)\left(x^2-7x+9\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x+3=0\\x^2-7x+9=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-3\\x=\frac{7\pm\sqrt{13}}{2}\end{cases}}}\)

\(c,x^3+3x^2-6x-8=0\)

\(\left(x+4\right)\left(x-2\right)\left(x+1\right)=0\)

\(Th1:x+4=0\Leftrightarrow x=-4\)

\(Th2:x-2=0\Leftrightarrow x=2\)

\(Th3:x+1=0\Leftrightarrow x=-1\)

5 tháng 3 2020

\(a,9.\left(2x+1\right)=4.\left(x-5\right)^2\)

\(< =>4x^2-40x+100=18x+9\)

\(< =>4x^2+58x+91=0\)

\(< =>\orbr{\begin{cases}x=\frac{29-3\sqrt{53}}{4}\\x=\frac{29+3\sqrt{53}}{4}\end{cases}}\)

\(b,x^3-4x^2-12x+27=0\)

\(< =>\left(x+3\right)\left(x^2-7x+9\right)=0\)

\(< =>\orbr{\begin{cases}x+3=0\\x^2-7x+9=0\end{cases}}\)

\(< =>\orbr{\begin{cases}x=-3\\x=\frac{7\pm\sqrt{13}}{2}\end{cases}}\)

30 tháng 7 2018

1) -3x2+5x=0

-x(3x-5)=0

suy ra hoặc x=0 hoặc 3x-5=0. giải ra ta có nghiệm phương trình là 0 và 3/5

2) x2+3x-2x-6=0

x(x+3)-2(x+3)=0

(x-2)(x+3)=0

suy ra hoặc x-2=0 hoặc x+3=0. giải ra ta có nghiệm là 2 và -3

3) x2+6x-x-6=0

x(x+6)-(x+6)=0

(x-1)(x+6)=0. vậy nghiệm là 1 và -6

4) x2+2x-3x-6=0

x(x+2)-3(x+2)=0

(x-3)(x+2)=0

vậy nghiệm là -2 và 3

5) x(x-6)-4(x-6)=0

(x-4)(x-6)=0. vậy nghiệm là 4 và 6

6)x(x-8)-3(x-8)=0

(x-3)(x-8)=0

suy ra nghiệm là 3 và 8

7) x2-5x-24=0

x2-8x+3x-24=0

x(x-8)+3(x-8)=0

(x+3)(x-8)=0

vậy nghiệm là -3 và 8

22 tháng 3 2020

câu 1:  -3x2 + 5x = 0

suy ra -x(3x-5)=0

sung ra x = 0 hoặc 3x-5=0 suy ra 3x = 5 suy ra x = 5/3

19 tháng 7 2016

a)      \(2\left(x+5\right)-x^2-5x=0\)

  \(\Leftrightarrow2x+10-x^2-5x=0\)

 \(\Leftrightarrow-x^2-3x+10=0\)

\(\Leftrightarrow x^2+3x-10=0\)

 \(\Leftrightarrow x^2-2x+5x-10=0\)

\(\Leftrightarrow x\left(x-2\right)+5\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+5\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\x+5=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=2\\x=-5\end{cases}}}\)

b) \(x^3-6x^2+12x-8=0\)

\(\Leftrightarrow\left(x^3-8\right)-\left(6x^2-12x\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x^2+2x+4\right)-6x\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x^2+2x+4-6x\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x^2-4x+4\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x-2\right)^2=0\)

\(\Leftrightarrow\left(x-2\right)^3=0\)

\(\Leftrightarrow x-2=0\Leftrightarrow x=2\)

c)\(16x^2-9\left(x+1\right)^2=0\)

\(\Leftrightarrow\left(4x\right)^2-\left[3\left(x+1\right)\right]^2=0\)

\(\Leftrightarrow\left(4x-3x-1\right)\left(4x+3x+1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(7x+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\7x+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\x=-\frac{1}{7}\end{cases}}}\)

d) \(x^3+x=0\)

\(\Leftrightarrow x^2\left(x+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x^2=0\\x+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}}}\)

e)\(x^2-2x-3=0\)

\(\Leftrightarrow x^2+x-3x-3=0\)

\(\Leftrightarrow x\left(x+1\right)-3\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x-3\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\x-3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=3\end{cases}}}\)

19 tháng 7 2016

Cảm ơn bạn nha