Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
⇒ 8x - 6 - 3x - 15 + 4x - 40 = 5x + 10
⇒ 9x - 61 = 5x + 10
⇒ 4x = 71
⇒ x = 17,7
\(\Rightarrow\) 8x - 6 - 3x - 15 + 4x - 40 = 5x + 10
\(\Rightarrow\) 9x - 61 = 5x + 10
\(\Rightarrow\) 4x = 71
\(\Rightarrow\) x = 17,75
\(\left(4x-3\right)-\left(x+5\right)=3\left(10-x\right)\)
<=> \(4x-3-x-5=30-3x\)
<=>\(3x-8-30+3x=0\)
<=> \(0x=38\)
<=>x thuộc rỗng, không tìm được giá trị x trong trường hợp này
\(a.\)
\(\left(x-8\right)\left(x^3+8\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-8=0\\x^3+8=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=8\\x^3=-8\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=8\\x=-2\end{matrix}\right.\)
\(S=\left\{8,-2\right\}\)
\(b.\)
\(\left(4x-3\right)-\left(x+5\right)=3\cdot\left(10-x\right)\)
\(\Leftrightarrow4x-3-x-5-30+3x=0\)
\(\Leftrightarrow6x-38=0\)
\(\Leftrightarrow x=\dfrac{38}{6}\)
\(S=\left\{\dfrac{38}{6}\right\}\)
a) (x - 8 )( x3 + 8) = 0
\(\Rightarrow\left[{}\begin{matrix}x-8=0\\x^3=-8\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=8\\x=-2\end{matrix}\right.\)
b)(4x - 3) – ( x + 5) = 3(10 - x)
\(\Leftrightarrow4x-3-x-5=30-3x\)
\(\Leftrightarrow3x-8=30-3x\)
\(\Leftrightarrow3x-8-30+3x=0\)
\(\Leftrightarrow6x-38=0\)
\(\Leftrightarrow x=\dfrac{19}{3}\)
a) `(x-8)(x^3+8)=0`
`<=>(x-8)(x+2)(x^2-2x+4)=0`
`<=>` \(\left[ \begin{array}{l}x=8\\x=-2\end{array} \right.\) (Vì `x^2-2x+4 \ne 0 forall x)`
Vậy `A={8;-2}`.
b) `(4x-3)-(x+5)=3(10-x)`
`,=>4x-3-x-5=30-3x`
`<=>3x-8=30-3x`
`<=>6x=38`
`<=>x=19/3`
Vậy `S={19/3}`.
a) => x - 8 = 0 hoặc x3 + 8 = 0
+) x - 8 = 0 => x = 8
+) x3 + 8 = 0 => x3 = - 8 = (-2)3 => x = -2
Vậy x = 8; -2
b) => 4x - 3 - x - 5 = 30 - 3x
=> 3x - 8 = 30 - 3x
=> 3x + 3x = 30 + 8
=> 6x = 38 => x = 38/6 = 19/3
Vậy x = 19/3
a) => x - 8 = 0 hoặc x3 + 8 = 0
+) x - 8 = 0 => x = 8
+) x3 + 8 = 0 => x3 = - 8 = (-2)3 => x = -2
Vậy x = 8; -2
b) => 4x - 3 - x - 5 = 30 - 3x
=> 3x - 8 = 30 - 3x
=> 3x + 3x = 30 + 8
=> 6x = 38 => x = 38/6 = 19/3
Vậy x = 19/3
a/Ta có: M(x)+N(x) = (2x5 - 4x3 + 2x2 + 10x - 1) + (-2x5 + 2x4 + 4x3 + x2 + x - 10)
= 2x5 - 2x5 - 4x3 + 4x3 + 2x4 + 2x2 + x2 + 10x + x -1 - 10
= 2x4 + 3x2 + 11x - 11
b/ Ta có: A(x) = N(x)-M(x) = (-2x5 + 2x4 + 4x3 + x2 + x - 10) - (2x5 - 4x3 + 2x2 + 10x - 1)
= -2x5 - 2x5 + 2x4 + 4x3 + 4x3 + x2 - 2x2 + x - 10x -10 + 1
= -2x5 + 2x4 + 8x3 - x2 - 9x -9
(4x-3)-(x+5)=(x+2)-2(x-10)
\(\Rightarrow4x-3-x-5=x+2-2x+10\)
\(\Rightarrow4x-x-2x=2+10+3+5\)
\(\Rightarrow x=20\)
( 4x -3 ) - ( x + 5 ) = 3 ( 10 - x )
4x -3 + x - 5 = 30 + 3x
4x - x - 8 = 30 + 3x
3x - 8 = 30 + 3x
3x + -8 = 3x + 30
3x = 30 + -8
3x = -22
x + ???
= 4x-3 -x -5 =30-3x
4x-x+3x = 30+3+5
6x = 38
x= 38/6 = 19/3