Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Ta có: \(\left(8x^2-4x\right):\left(-4x\right)-\left(x+2\right)=8\)
\(\Leftrightarrow-2x+1-x-2=8\)
\(\Leftrightarrow-3x=9\)
hay x=-3
b: Ta có: \(\left(2x^4-3x^3+x^2\right):\left(-\dfrac{1}{2}x^2\right)+4\left(x-1\right)^2=0\)
\(\Leftrightarrow-4x^2+6x-2+4x^2-8x+4=0\)
\(\Leftrightarrow-2x=-2\)
hay x=1
\(\Leftrightarrow-2x+1-x-2=8\cdot\left(-4x^2+6x-2x\right)+4\left(x^2-2x+1\right)=0\)
\(\Leftrightarrow-3x-1+32x^2-48x+16x-4x^2+8x-4=0\)
\(\Leftrightarrow28x^2-27x-5=0\)
\(\text{Δ}=\left(-27\right)^2-4\cdot28\cdot\left(-5\right)=1289>0\)
Do đó: Phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{27-\sqrt{1289}}{56}\\x_2=\dfrac{27+\sqrt{1289}}{56}\end{matrix}\right.\)
a) \(\left(x+6\right)^2-x\left(x+9\right)=0\)
\(\Leftrightarrow\)\(x^2+12x+36-x^2-9x=0\)
\(\Leftrightarrow\)\(3x+36=0\)
\(\Leftrightarrow\)\(x=-12\)
Vậy...
b) \(6x\left(2x+5\right)-\left(3x+4\right)\left(4x-3\right)=9\)
\(\Leftrightarrow\)\(12x^2+30x-12x^2-7x+12=9\)
\(\Leftrightarrow\)\(23x+12=9\)
\(\Leftrightarrow\)\(x=-\frac{3}{23}\)
Vậy
c) \(2x\left(8x+3\right)-\left(4x+1\right)=13\)
\(\Leftrightarrow\)\(16x^2+6x-4x-1=13\)
\(\Leftrightarrow\)\(16x^2+2x-14=0\)
\(\Leftrightarrow\)\(8x^2+x-7=0\)
\(\Leftrightarrow\)\(\left(x+1\right)\left(8x-7\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=-1\\x=\frac{7}{8}\end{cases}}\)
Vậy
d) \(\left(x-4\right)^2-x\left(x+4\right)=0\)
\(\Leftrightarrow\)\(x^2-8x+16-x^2-4x=0\)
\(\Leftrightarrow\)\(-12x+16=0\)
\(\Leftrightarrow\)\(x=\frac{4}{3}\)
Vậy
e) \(\left(x-2\right)^2-\left(2x+3\right)\left(x-2\right)=0\)
\(\Leftrightarrow\)\(x^2-4x+4-2x^2+x+6=0\)
\(\Leftrightarrow\)\(-x^2-3x+10=0\)
\(\Leftrightarrow\)\(\left(2-x\right)\left(x+5\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=2\\x=-5\end{cases}}\)
Vậy
Rút gọn hết ta được :
a/ 41x - 17 = -21
=> 41x = -4 => x = 4/41
b/ 34x - 17 = 0
=> 34x = 17
=> x = 17/34 = 1/2
c/ 19x + 56 = 52
=> 19x = -4
=> x = -4/19
d/ 20x2 - 16x - 34 = 10x2 + 3x - 34
=> 10x2 - 19x = 0
=> x(10x - 19) = 0
=> x = 0
hoặc 10x - 19 = 0 => 10x = 19 => x = 19/10
Vậy x = 0 ; x = 19/10
Rút gọn hết ta được :
a/ 41x - 17 = -21
=> 41x = -4 => x = 4/41
b/ 34x - 17 = 0
=> 34x = 17
=> x = 17/34 = 1/2
c/ 19x + 56 = 52
=> 19x = -4
=> x = -4/19
d/ 20x 2 - 16x - 34 = 10x 2 + 3x - 34
=> 10x 2 - 19x = 0
=> x(10x - 19) = 0
=> x = 0 hoặc 10x - 19 = 0
=> 10x = 19
=> x = 19/10
Vậy x = 0 ; x = 19/10
bạn đăng tách ra nhé
a, \(\left(2x+1\right)\left(x-4\right)=\left(2x+1\right)^2\)
\(\Leftrightarrow2x^2-7x-4=4x^2+4x+1\Leftrightarrow2x^2+11x+5=0\)
\(\Leftrightarrow\left(x+5\right)\left(2x+1\right)=0\Leftrightarrow x=-5;x=-\frac{1}{2}\)
b, sửa đề : \(\left(x-4\right)\left(x^2+4x+16\right)-\left(x^2-6\right)=2\)
\(\Leftrightarrow x^3-64-x^2+6=2\Leftrightarrow x^3-x^2-60=0\Leftrightarrow x=4,27...\)
c, \(\left(2x-1\right)^2-\left(3x+4\right)^2=0\Leftrightarrow\left(2x-1+3x+4\right)\left(2x-1-3x-4\right)=0\)
\(\Leftrightarrow\left(5x+3\right)\left(-x-5\right)=0\Leftrightarrow x=-\frac{3}{5};x=-5\)
d, \(\left(9x+2\right)\left(x-1\right)-\left(3x-1\right)^2=0\)
\(\Leftrightarrow9x^2-7x-2-9x^2+6x-1=0\Leftrightarrow-x-3=0\Leftrightarrow x=-3\)
e, \(\left(2x+3\right)^2-4\left(x-1\right)\left(x-1\right)\left(x+1\right)=0\)
\(\Leftrightarrow4x^2+12x+9-4\left(x-1\right)\left(x^2-1\right)=0\)
\(\Leftrightarrow4x^2+12x+9-4\left(x^3-x-x^2+1\right)=0\)
\(\Leftrightarrow4x^2+12x+9-4x^3+4x+4x^2-4=0\)
\(\Leftrightarrow-4x^3+8x^2+16x+5=0\Leftrightarrow x=-0,9...;x=-0,41...;x=3,31...\)
f, \(15x\left(x+4-6x-24\right)=0\Leftrightarrow15\left(-5x-20\right)=0\)
\(\Leftrightarrow-75x-300=0\Leftrightarrow x=-4\)
g, \(\left(4x-10\right)\left(2-3x\right)-30^2=0\)
\(\Leftrightarrow8x-12x^2-20+30x-900=0\Leftrightarrow-12x^2+38x-920=0\)
vô nghiệm
a)5x-(4-2x+x2)(x+2)+x(x+1)=0
<=>5x-(4x+8-2x2-4x+x3+2x2)+x2+x=0
<=>5x-4x-8+2x2+4x-x3-2x2+x2+x=0
<=>-x3+x2+6x-8=0
<=>-x3+2x2-x2+2x+4x-8=0
<=>(x-2)(-x2-x+4)=0
<=>x-2=0 hoặc -x2-x+4=0
*x-2=0<=>x=2
* -x2-x+4=-x2-x-\(\frac{1}{4}\)+\(\frac{17}{4}\)=-(x+\(\frac{1}{2}\))2+\(\frac{17}{4}\)=0 <=>(x+\(\frac{1}{2}\))2=\(\frac{17}{4}\) <=>x thuộc tập hợp {\(\frac{\sqrt{17}}{2}\)-\(\frac{1}{2}\) ;-\(\frac{\sqrt{17}}{2}\)-\(\frac{1}{2}\)}
vậy..................
b)(4x2+2x+1)(2x-1)-4x(2x2-3)=23
<=>8x3-4x2+4x2-2x+2x-1-(8x3-12x)=23
<=>8x3-1-8x3+12x=23
<=>12x=24
<=>x=2
Vậy..........
Mấy bài này cậu chịu khó nháp tí là làm được thôi mà , chúc cậu thành công
1: Ta có: \(\left(x+3\right)^2-\left(x+2\right)\left(x-2\right)=4x+17\)
\(\Leftrightarrow x^2+6x+9-x^2+4-4x=17\)
\(\Leftrightarrow x=2\)
3: Ta có: \(\left(2x+3\right)\left(x-1\right)+\left(2x-3\right)\left(1-x\right)=0\)
\(\Leftrightarrow2x^2-2x+3x-3+2x-2x^2-3+3x=0\)
\(\Leftrightarrow6x=6\)
hay x=1
2: \(3x\left(x-4\right)+2x-8=0\)
=>\(3x\left(x-4\right)+2\left(x-4\right)=0\)
=>\(\left(x-4\right)\left(3x+2\right)=0\)
=>\(\left[{}\begin{matrix}x-4=0\\3x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=-\dfrac{2}{3}\end{matrix}\right.\)
3: 4x(x-3)+x2-9=0
=>\(4x\left(x-3\right)+\left(x+3\right)\left(x-3\right)=0\)
=>\(\left(x-3\right)\left(4x+x+3\right)=0\)
=>\(\left(x-3\right)\left(5x+3\right)=0\)
=>\(\left[{}\begin{matrix}x-3=0\\5x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-\dfrac{3}{5}\end{matrix}\right.\)
4: \(x\left(x-1\right)-x^2+3x=0\)
=>\(x^2-x-x^2+3x=0\)
=>2x=0
=>x=0
5: \(x\left(2x-1\right)-2x^2+5x=16\)
=>\(2x^2-x-2x^2+5x=16\)
=>4x=16
=>x=4
2:
=>x^3-1-2x^3-4x^6+4x^6+4x=6
=>-x^3+4x-7=0
=>x=-2,59
4: =>8x-24x^2+2-6x+24x^2-60x-4x+10=-50
=>-62x+12=-50
=>x=1
\(\left(4x-1\right)^2-4\left(2x+1\right)^2-x-4=0\)
\(\Leftrightarrow\left(16x^2-8x+1\right)-4\left(4x^2+4x+1\right)-x-4=0\)
\(\Leftrightarrow16x^2-8x+1-16x^2-16x-4-x-4=0\)
\(\Leftrightarrow25x-7=0\)
\(\Leftrightarrow25x=7\)
\(\Leftrightarrow x=\dfrac{7}{25}\)
`@` `\text {Ans}`
`\downarrow`
`(4x - 1)^2 - 4(2x + 1)^2 - x - 4 = 0`
`<=> 16x^2 - 8x + 1 - 4(4x^2 + 4x + 1) - x - 4 = 0`
`<=> 16x^2 - 8x + 1 - 16x^2 - 16x - 4 - x - 4 = 0`
`<=> -25x - 7 = 0`
`<=> -25x = 7`
`<=> x =`\(\dfrac{-7}{25}\)
Vậy, \(x= \dfrac{-7}{25}\)