Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Rightarrow25\left(x+1\right)^4-26\left(x+1\right)^2+1=0\Leftrightarrow25\left(x+1\right)^4-25\left(x+1\right)^2-\left(\left(x+1\right)^2-1\right)=0\)
\(\Leftrightarrow25\left(x+1\right)^2.\left(\left(x+1\right)^2-1\right)-\left(\left(x+1\right)^2-1\right)=0\)
\(\Leftrightarrow\left(\left(x+1\right)^2-1\right).\left(25\left(x+1\right)^2-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}\left(x+1\right)^2-1=0\\25\left(x+1\right)^2-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0,-2\\x=-\frac{4}{5},-\frac{6}{5}\end{cases}}}\)
\(x^2+x-1=0\Leftrightarrow\left(x+\frac{1}{2}\right)^2-\frac{5}{4}=0\Leftrightarrow\orbr{\begin{cases}x+\frac{1}{2}=\frac{\sqrt{5}}{2}\\x+\frac{1}{2}=\frac{-\sqrt{5}}{2}\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{\sqrt{5}-1}{2}\\x=\frac{-\sqrt{5}-1}{2}\end{cases}}}\)
a, \(x\left(x+1\right)-x\left(x-5\right)=6\Leftrightarrow x^2+x-x^2+5x=6\)
\(\Leftrightarrow x=1\)
b, \(4x^2-4x+1=0\Leftrightarrow\left(2x-1\right)^2=0\Leftrightarrow x=\frac{1}{2}\)
c, \(x^2-\frac{1}{4}=0\Leftrightarrow\left(x-\frac{1}{2}\right)\left(x+\frac{1}{2}\right)=0\Leftrightarrow x=\pm\frac{1}{2}\)
d, \(5x^2=20x\Leftrightarrow5x^2-20x=0\Leftrightarrow5x\left(x-4\right)=0\Leftrightarrow x=0;4\)
e, \(4x^2-9-x\left(2x-3\right)=0\Leftrightarrow4x^2-9-2x^2=3x\Leftrightarrow2x^2-9-3x=0\)
\(\Leftrightarrow\left(2x+3\right)\left(x-3\right)=0\Leftrightarrow x=-\frac{3}{2};3\)
f, \(4x^2-25=\left(2x-5\right)\left(2x+7\right)\Leftrightarrow\left(2x-5\right)\left(2x+5\right)-\left(2x-5\right)\left(2x+7\right)=0\)
\(\Leftrightarrow-2\left(2x+5\right)=0\Leftrightarrow x=-\frac{5}{2}\)
a) x( x + 1 ) - x( x - 5 ) = 6
⇔ x2 + x - x2 + 5x = 6
⇔ 6x = 6
⇔ x = 1
b) 4x2 - 4x + 1 = 0
⇔ ( 2x - 1 )2 = 0
⇔ 2x - 1 = 0
⇔ x = 1/2
c) x2 - 1/4 = 0
⇔ ( x - 1/2 )( x + 1/2 ) = 0
⇔ \(\orbr{\begin{cases}x-\frac{1}{2}=0\\x+\frac{1}{2}=0\end{cases}}\Leftrightarrow x=\pm\frac{1}{2}\)
d) 5x2 = 20x
⇔ 5x2 - 20x = 0
⇔ 5x( x - 4 ) = 0
⇔ \(\orbr{\begin{cases}5x=0\\x-4=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=4\end{cases}}\)
e) 4x2 - 9 - x( 2x - 3 ) = 0
⇔ ( 2x - 3 )( 2x + 3 ) - x( 2x - 3 ) = 0
⇔ ( 2x - 3 )( 2x + 3 - x ) = 0
⇔ ( 2x - 3 )( x + 3 ) = 0
⇔ \(\orbr{\begin{cases}2x-3=0\\x+3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{3}{2}\\x=-3\end{cases}}\)
f) 4x2 - 25 = ( 2x - 5 )( 2x + 7 )
⇔ ( 2x - 5 )( 2x + 5 ) - ( 2x - 5 )( 2x + 7 ) = 0
⇔ ( 2x - 5 )( 2x + 5 - 2x - 7 ) = 0
⇔ ( 2x - 5 )(-2) = 0
⇔ 2x - 5 = 0
⇔ x = 5/2
Ta có:
\(a)\left(2x-5\right)\left(x+2\right)-2x\left(x-1\right)=15\)
\(\Leftrightarrow\left(2x^2-x-10\right)-\left(2x^2-2x\right)=15\Leftrightarrow x-10=15\)
\(\Leftrightarrow x=25\)
\(b)\left(5-2x\right)\left(2x+7\right)=4x^2-25\)
\(\Leftrightarrow\left(5-2x\right)\left(2x+7\right)=\left(2x-5\right)\left(2x+5\right)\)
\(\Leftrightarrow\left(5-2x\right)\left(4x+12\right)=0\)
\(5-2x=0\Leftrightarrow x=\frac{5}{2}\)
\(4x+12=0\Leftrightarrow x=-3\)
Vậy ..........................................
a. \(2.\left(5x-8\right)-3.\left(4x-5\right)=4.\left(3x-4\right)+11\Leftrightarrow10x-16-12x+15=12x-16+11\\ \)
\(\Leftrightarrow-2x-1=12x-5\Leftrightarrow14x-4=0\Leftrightarrow x=\frac{2}{7}\)
\(a,2\left(5x-8\right)-3\left(4x-5\right)=4\left(3x-4\right)+11\)
\(\Leftrightarrow10x-16-12x+15=12x-16+11\)
\(\Leftrightarrow10x-12x-12x=-16+11+16-15\)
\(\Leftrightarrow-14x=-4\)
\(\Leftrightarrow x=\frac{-4}{-14}=\frac{2}{7}\)
\(\left(5-2x\right)\left(2x-7\right)=4x^2-25\)
\(-\left(2x-5\right)\left(2x-7\right)=\left(2x\right)^2-5^2\)
\(\left(2x-5\right)\left(7-2x\right)=\left(2x-5\right)\left(2x+5\right)\)
\(\left(2x-5\right)\left(7-2x\right)-\left(2x-5\right)\left(2x+5\right)=0\)
\(\left(2x-5\right)\left(7-2x-2x-5\right)=0\)
\(\left(2x-5\right)\left(2-4x\right)=0\)
\(\Rightarrow\orbr{\begin{cases}2x-5=0\\2-4x=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{5}{2}\\x=\frac{1}{2}\end{cases}}\)
a) \(A=2x^2+2x+3\)
\(A=2\left(x^2+x+\frac{3}{2}\right)\)
\(A=2\left[x^2+2\cdot x\cdot\frac{1}{2}+\left(\frac{1}{2}\right)^2+\frac{5}{4}\right]\)
\(A=2\left[\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\right]\)
\(A=2\left(x+\frac{1}{2}\right)^2+\frac{5}{2}\ge\frac{5}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow x+\frac{1}{2}=0\Leftrightarrow x=\frac{-1}{2}\)
b) Biến đổi mẫu thức :
\(3x^2+4x+15\)
\(=3\left(x^2+\frac{4}{3}x+5\right)\)
\(=3\left[x^2+2\cdot x\cdot\frac{2}{3}+\left(\frac{2}{3}\right)^2+\frac{41}{9}\right]\)
\(=3\left[\left(x+\frac{2}{3}\right)^2+\frac{41}{9}\right]\)
\(=3\left(x+\frac{2}{3}\right)^2+\frac{41}{3}\)
\(B=\frac{5}{3\left(x+\frac{2}{3}\right)^2+\frac{41}{3}}\ge\frac{5}{\frac{41}{3}}=\frac{15}{41}\)
Dấu "=" xảy ra \(\Leftrightarrow x+\frac{2}{3}=0\Leftrightarrow x=\frac{-2}{3}\)
c) \(C=-x^2+2x-2\)
\(C=-\left(x^2-2x+2\right)\)
\(C=-\left(x^2-2\cdot x\cdot1+1^2+1\right)\)
\(C=-\left[\left(x-1\right)^2+1\right]\)
\(C=-1-\left(x-1\right)^2\le-1\)
Dấu "=" xảy ra \(\Leftrightarrow x-1=0\Leftrightarrow x=1\)
d) Biến đổi mẫu thức tương tự câu b)
\(P=\frac{xy}{\left|xy\right|}+\frac{x-y}{\left|x-y\right|}\cdot\left(\frac{x}{\left|x\right|}-\frac{y}{\left|y\right|}\right)\)
TH1: \(x,y>0\)
+) Xét \(x>y\): \(P=\frac{xy}{xy}+\frac{x-y}{x-y}\cdot\left(\frac{x}{x}-\frac{y}{y}\right)=1+1\cdot\left(1-1\right)=1\)
+) Xét \(x< y\): \(P=\frac{xy}{xy}+\frac{x-y}{y-x}\cdot\left(\frac{x}{x}-\frac{y}{y}\right)=1+\left(-1\right)\cdot\left(1-1\right)=1\)
TH2: \(x,y< 0\)
+) Xét \(x>y\): \(P=\frac{xy}{xy}+\frac{x-y}{x-y}\cdot\left(\frac{x}{-x}-\frac{y}{-y}\right)=1+1\cdot\left[-1-\left(-1\right)\right]=1\)
+) Xét \(x< y\): \(P=\frac{xy}{xy}+\frac{x-y}{y-x}\cdot\left(\frac{x}{-x}-\frac{y}{-y}\right)=1\)
TH3: \(x>0;y< 0\): \(P=\frac{xy}{-xy}+\frac{x-y}{x-y}\cdot\left(\frac{x}{x}-\frac{y}{-y}\right)=-1+1\cdot\left(1+1\right)=1\)
TH4: \(x< 0;y>0\): \(P=\frac{xy}{-xy}+\frac{x-y}{y-x}\cdot\left(\frac{x}{-x}-\frac{y}{y}\right)=-1+\left(-1\right)\cdot\left(-1-1\right)=1\)
Nói chung với mọi x, y thì P = 1
\(A=x^2+2x+1-3=\left(x+1\right)^2-3\ge-3\)
dấu = xảy ra khi x+1=0
=> x=-1
vậy...
\(B=\frac{10}{-x^2+4x-5}=\frac{10}{-\left(x^2-4x+4\right)-9}=\frac{10}{-\left(x-2\right)^2-9}\le\frac{10}{-9}\)
dấu = xảy ra khi x-2=0
=> x=2
vậy...
\(C=\frac{-6}{-x^2+2x-5}=\frac{-6}{-\left(x^2-2x+1\right)-4}=\frac{-6}{-\left(x-1\right)^2-4}\le\frac{3}{2}\)
dấu = xảy ra khi x-1=0
=> x=1
Vậy ..
câu B,C tìm GTLN chứ
a) ta có: \(A=x^2+2x-2=x^2+2x+1-3=\left(x+1\right)^2-3\ge-3.\)
Để A có GTNN
=> (x+1)2 - 3 = - 3
(x+1)2 = 0 => x = -1
KL: GTNN A = - 3 tại x = - 1
b) ta có: \(B=\frac{10}{4x-x^2-5}=\frac{10}{-\left(x^2-4x+5\right)}=\frac{10}{-\left(x^2-4x+4+1\right)}=\frac{10}{-\left(x-2\right)^2-1}\)\(\ge-10\)
(đkxđ: ko có)
Để B NN
=> ... => x = 2
KL:...
c) ta có: \(C=\frac{-6}{2x-x^2-5}=\frac{-6}{-\left(x^2-2x+5\right)}=\frac{6}{x^2-2x+1+4}=\frac{6}{\left(x-1\right)^2+4}\)\(\ge\frac{3}{2}\)
=> ...
=> x = 1
KL:...
\(\frac{4}{2x+3}-\frac{7}{3x-5}=0\left(đkxđ:x\ne-\frac{3}{2};\frac{5}{3}\right)\)
\(< =>\frac{4\left(3x-5\right)}{\left(2x+3\right)\left(3x-5\right)}-\frac{7\left(2x+3\right)}{\left(2x+3\right)\left(3x-5\right)}=0\)
\(< =>12x-20-14x-21=0\)
\(< =>2x+41=0< =>x=-\frac{41}{2}\left(tm\right)\)
\(\frac{4}{2x-3}+\frac{4x}{4x^2-9}=\frac{1}{2x+3}\left(đk:x\ne-\frac{3}{2};\frac{3}{2}\right)\)
\(< =>\frac{4\left(2x+3\right)}{\left(2x-3\right)\left(2x+3\right)}+\frac{4x}{\left(2x-3\right)\left(2x+3\right)}-\frac{2x-3}{\left(2x+3\right)\left(2x-3\right)}=0\)
\(< =>8x+12+4x-2x+3=0\)
\(< =>10x=15< =>x=\frac{15}{10}=\frac{3}{2}\left(ktm\right)\)
a) -4x(x - 7) + 4x(x2 - 5) = 28x2 - 13
=> -4x2 + 28x + 4x2 - 20x = 28x2 - 13
=> (-4x2 + 4x2) + (28x - 20x) = 28x2 - 13
=> 8x = 28x2 - 13
=> 8x - 28x2 + 13 = 0
=> phương trình vô nghiệm
b) (4x2 - 5x)(3x + 2) - 7x(x + 5) = (-4 + x)(-2x - 3) + 12x2 + 2x2
=> 4x2(3x + 2) - 5x(3x + 2) - 7x2 - 35x = -4(-2x - 3) + x(-2x - 3) + 14x2
=> 12x3 + 8x2 - 15x2 - 10x - 7x2 - 35x = 8x + 12 - 2x2 - 3x + 14x2
=> 12x3 + (8x2 - 15x2 - 7x2) + (-10x - 35x) = (8x - 3x) + 12 + (-2x2 + 14x2)
=> 12x3 - 14x2 - 45x = 5x + 12 + 12x2
=> 12x3 - 14x2 - 45x - 5x - 12 - 12x2 = 0
=> 12x3 + (-14x2 - 12x2) + (-45x - 5x) - 12 = 0
=> 12x3 - 26x2 - 50x - 12 = 0
Làm nốt
Cái câu b sửa cái đề lại nhé dấu " = " ở chỗ (-2x = 3) là gì vậy?
\(\left(2x+5\right)\left(2x-5\right)+26=4x^2\\ < =>\left[\left(2x\right)^2-5^2\right]+26=4x^2\\ < =>\left(4x^2-25\right)+26=4x^2\\ < =>4x^2-25+26=4x^2\\< =>4x^2-4x^2+1=0\\ < =>1=0\)
=> Vô lý
=> Pt vô nghiệm