Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\)\(x^4-4x^3+4x^2=0\)
\(\Leftrightarrow x^2.\left(x^2-4x+4\right)=0\)
\(\Leftrightarrow x^2.\left(x^2-2.x.2+2^2\right)=0\)
\(\Leftrightarrow x^2.\left(x-2\right)^2=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2=0\\\left(x-2\right)^2=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=0\\x-2=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}\)
\(b,\)\(x^2+5x+4=0\)
\(\Leftrightarrow x^2+x+4x+4=0\)
\(\Leftrightarrow x.\left(x+1\right)+4.\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right).\left(x+4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\x+4=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=-1\\x=-4\end{cases}}\)
\(c,\)\(9x-6x^2-3=0\)
\(\Leftrightarrow-3.\left(2x^2-3x+1\right)=0\)
\(\Leftrightarrow2x^2-3x+1=0\)
\(\Leftrightarrow2x^2-2x-x+1=0\)
\(\Leftrightarrow2x.\left(x-1\right)-\left(x-1\right)\)
\(\Leftrightarrow\left(x-1\right).\left(2x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\2x-1=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=1\\2x=1\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=\frac{1}{2}\end{cases}}\)
\(d,\)\(2x^2+5x+2=0\)
\(\Leftrightarrow2x^2+4x+x+2=0\)
\(\Leftrightarrow2x.\left(x+2\right)+\left(x+2\right)=0\)
\(\Leftrightarrow\left(x+2\right).\left(2x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+2=0\\2x+1=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=-2\\2x=-1\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=-2\\x=-\frac{1}{2}\end{cases}}\)
1,x^2-(x+1)(x-1)=0
x^2-x^2+1+0
1=0(vô lý)
2,5x^3+3x^2+3x+1=4x^2
x^3+3x^2+3x+1=0
(x+1)=0
x=-1
3,x^3+x^2=0
x^2(x+1)=0
x=0 or x=-1
4,2x^3-12x^2+18x=0
x^3-6x^2+9x=0
x(x^2-6x+9)=0
x(x-3)^2=0
x=0 or x=3
5,5x^2-4(x^2-2x+1)+20=0
5x^2-4x^2+8x-4+20=0
x^2+8x+16=0
(x+4)^2=0
x=-4
6,5x(x-3)+7x-21=0
5x(x-3)+7(x-3)=0
(5x+7)(x-3)=0
5x-7=0 or x-3=0
x=7/5 or x=3
7,2x^3-50x=0
2x(x^2-25)=0
2x(x-5)(x+5)=0
x=0 or x=5 or x=-5
8,(4x-1)^2-9(x+3)^2=0
(4x-1)^2-3^2*(x+3)^2=0
(4x-1)^2-(3x+9)^2=0
(4x-1-3x-9)(4x-1+3x+9)=0
(x-10)(7x+8)=0
x=10 or x=-8/7
9,3(x-2)^2-x+2=0
3*(x-2)*(x-2)-(x-2)=0
(3x-6)(x-2)-(x-2)=0
(x-2)(3x-6-1)=0
(x-2)(3x-7)=0
x=2 or x=7/3
10,9x^2+6x-8=0
9x^2+12x-6x-8=0
3x(3x-2)+4(3x-2)=0
(3x+4)(3x-2)=0
3x+4=0 or 3x-2=0
x=-4/3 or x=2/3
a. \(\left(2x-1\right)^2-4x^2+1=0\)
\(\Leftrightarrow4x^2-4x+1-4x^2+1=0\)
\(\Leftrightarrow2-4x=0\)
\(\Leftrightarrow x=\dfrac{1}{2}\)
Vậy ...
b/ \(6x^3-24x=0\)
\(\Leftrightarrow6x\left(x^2-4\right)=0\)
\(\Leftrightarrow6x\left(x-2\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}6x=0\\x-2=0\\x+2=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\\x=-2\end{matrix}\right.\)
Vậy ...
c/ \(2x\left(x-3\right)-4x+12=0\)
\(\Leftrightarrow2x\left(x-3\right)-4\left(x-3\right)=0\)
\(\Leftrightarrow2\left(x-2\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x-3=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=3\end{matrix}\right.\)
Vậy ...
d/ \(x^3-5x^2+x-5=0\)
\(\Leftrightarrow x^2\left(x-5\right)+\left(x-5\right)=0\)
\(\Leftrightarrow\left(x-5\right)\left(x^2+1\right)=0\)
Mà \(x^2+1>0\)
\(\Leftrightarrow x-5=0\Leftrightarrow x=5\)
Vậy..
\(x^2-6x+5=0\)
<=> \(x^2-x-5x+5=0\)
<=> \(x\left(x-1\right)-5\left(x-1\right)=0\)
<=> \(\left(x-1\right)\left(x-5\right)=0\)
<=> \(\left\{{}\begin{matrix}x-1=0\\x-5=0\end{matrix}\right.\)
<=> \(\left\{{}\begin{matrix}x=1\\x=5\end{matrix}\right.\)
Vậy phương trình có nghiệm là x=1 và x=5
\(2x^2+7x-9=0\) ( nếu là 9 thì ko ra kq đc nên mình đổi thành -9 nha )
<=> \(2x^2-2x+9x-9=0\)
<=> \(2x\left(x-1\right)+9\left(x-1\right)=0\)
<=> \(\left(x-1\right)\left(2x+9\right)=0\)
<=> \(\left\{{}\begin{matrix}x-1=0\\2x+9=0\end{matrix}\right.\)
<=> \(\left\{{}\begin{matrix}x=1\\x=\frac{-9}{2}\end{matrix}\right.\)
\(4x^2-7x+3=0\)
<=> \(4x^2-4x-3x+3=0\)
<=>\(4x\left(x-1\right)-3\left(x-1\right)=0\)
<=> \(\left(x-1\right)\left(4x-3\right)=0\)
<=> \(\left\{{}\begin{matrix}x-1=0\\4x-3=0\end{matrix}\right.\)
<=> \(\left\{{}\begin{matrix}x=1\\x=\frac{3}{4}\end{matrix}\right.\)
\(2\left(x+5\right)=x^2+5x\)
<=> \(2\left(x+5\right)-x^2-5x=0\)
<=>\(2\left(x+5\right)-x\left(x+5\right)=0\)
<=>\(\left(x+5\right)\left(2-x\right)=0\)
<=>\(\left\{{}\begin{matrix}x+5=0\\2-x=0\end{matrix}\right.\)
<=> \(\left\{{}\begin{matrix}x=-5\\x=2\end{matrix}\right.\)
a) Ta có : x3 - x = 0
=> x(x2 - 1) = 0
=> \(\orbr{\begin{cases}x=0\\x^2=1\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=\pm1\end{cases}}\)
Vậy \(x\in\left\{0;1;-1\right\}\)
b) x2 + 4x = 0
=> x(x + 4) = 0
=> \(\orbr{\begin{cases}x=0\\x=-4\end{cases}}\)
Vậy \(x\in\left\{0;-4\right\}\)
c) 9x2 - 1 = 0
=> 9x2 = 1
=> x2 = \(\frac{1}{9}\)
=> \(\orbr{\begin{cases}x=\frac{1}{3}\\x=-\frac{1}{3}\end{cases}}\)
Vậy \(x\in\left\{\frac{1}{3};-\frac{1}{3}\right\}\)
d) 5x2 - 10x + 5 = 0
=> 5x2 - 5x - 5x + 5 = 0
=> 5x(x - 1) - 5(x - 1) = 0
=> 5(x - 1)2 = 0
=> (x - 1)2 = 0
=> x - 1 = 0
=> x = 1
e) x2 + 6x + 5 = 0
=> x2 + 6x + 9 - 4 = 0
=> (x + 3)2 = 4
=> \(\orbr{\begin{cases}x+3=2\\x+3=-2\end{cases}}\Rightarrow\orbr{\begin{cases}x=-1\\x=-5\end{cases}}\)
Vậy \(x\in\left\{-1;-5\right\}\)
Câu a : Mình ko biết làm .
Câu b : Bạn làm rồi khỏi làm nữa
Câu c :
\(x\left(2x-7\right)-4x+14=0\)
\(x\left(2x-7\right)-\left(4x-14\right)=0\)
\(x\left(2x-7\right)-2\left(2x-7\right)=0\)
\(\left(2x-7\right)\left(x-2\right)=0\)
\(\left[{}\begin{matrix}2x-7=0\\x-2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{7}{2}\\x=2\end{matrix}\right.\)
Vậy \(x=\dfrac{7}{2}\) và \(x=2\)
Câu d :
\(\left(2x-3\right)^2-\left(x+5\right)^2=0\)
\(\left(2x-3-x-5\right)\left(2x-3+x+5\right)=0\)
\(\left(x-8\right)\left(3x+2\right)=0\)
\(\left[{}\begin{matrix}x-8=0\\3x+2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=8\\x=-\dfrac{2}{3}\end{matrix}\right.\)
Vậy \(x=8\) và \(x=-\dfrac{2}{3}\)
Vậy em xin câu a ^^
a, \(6x^3+x^2+x+1=0\)
\(\Rightarrow6x^3+3x^2-2x^2-x+2x+1=0\)
\(\Rightarrow3x^2\left(2x+1\right)-x\left(2x+1\right)+\left(2x+1\right)=0\)
\(\Rightarrow\left(2x+1\right)\left(3x^2-x+1\right)=0\) (1)
Ta có: \(3x^2-x+1=3x^2-\dfrac{1}{2}x-\dfrac{1}{2}x+\dfrac{1}{12}+\dfrac{11}{12}\)
\(=3x\left(x-\dfrac{1}{6}\right)-\dfrac{1}{2}\left(x-\dfrac{1}{6}\right)+\dfrac{11}{12}\)
\(=3\left(x-\dfrac{1}{6}\right)^2+\dfrac{11}{12}>0\) (2)
Từ (1) và (2) suy ra \(2x+1=0\Rightarrow x=-\dfrac{1}{2}\)
Chúc bạn học tốt!!!
1.
a. x2 - 2x + 1 = 0
x2 - 2x*1 + 12 = 0
(x-1)2 = 0
............( tới đây tui bí rùi tự suy nghĩ rùi lm tiếp ik)
1, Tìm x biết:
a, x2 - 2x +1 = 0
(x-1)2 = 0
x-1 = 0
x = 1. Vậy ...
b, ( 5x + 1)2 - (5x - 3) ( 5x + 3) = 30
25x2 +10x + 1 - (25x2 -9) = 30
25x2 +10x + 1 - 25x2 +9 = 30
10x + 10 =30
10(x+1) = 30
x+1 =3
x = 2. vậy ...
c, ( x - 1) ( x2 + x + 1) - x ( x +2 ) ( x - 2) = 5
(x3 - 1) - x(x2 -4) = 5
x3 - 1 - x3 + 4x = 5
4x - 1 = 5
4x = 6
x = \(\dfrac{3}{2}\) .vậy ...
d, ( x - 2)3 - ( x - 3) ( x2 + 3x + 9 ) + 6 ( x + 1)2 = 15
x3 - 6x2 + 12x - 8 - (x3 - 27) + 6 (x2 + 2x +1) =15
x3 - 6x2 + 12x - 8 - x3 + 27 + 6x2 + 12x +6 =15
24x + 25 = 15
24x = -10
x = \(\dfrac{-5}{12}\) vậy ...