K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 11 2015

Gọi d là ƯCLN(2n+5;2n)

Ta có: 2n+5 chia hết cho d

2n chia hết cho d 

=> (2n+5)-2n=5 chia hết cho d

=> d thuộc Ư(5)={1;5}

Vậy nếu n=5;10;15 thì ƯCLN(2n+5;2n)=5

Nếu n là các số tự nhiên khác khác với các số tự nhiên nêu trên thì ƯCLN(2n+5;2n)=1

30 tháng 11 2019

Đặt: \(d=\left(n^3+2n;n^4+3n^2+1\right)\)

=> \(\hept{\begin{cases}n^3+2n⋮d\\n^4+3n^2+1⋮d\end{cases}\Rightarrow}\hept{\begin{cases}n^4+2n^2=n\left(n^3+2n\right)⋮d\\n^4+3n^2+1⋮d\end{cases}}\)

=> \(\left(n^4+3n^2+1\right)-\left(n^4+2n^2\right)⋮d\)

=> \(n^2+1⋮d\)

=> \(n\left(n^2+1\right)⋮d\)

=> \(n^3+n⋮d\)

=> \(\left(n^3+2n\right)-\left(n^3+n\right)⋮d\)

=> \(n⋮d\)mà \(n^4+3n^2+1⋮d\)

=> \(1⋮d\)

=> d = 1

=> \(\left(a;b\right)=1\)

9 tháng 11 2016

Gọi d là UCLN(2n+3,3n+5) 

\(\hept{\begin{cases}2n+3⋮d\\3n+5⋮d\end{cases}\Rightarrow\hept{\begin{cases}3\left(2n+3\right)⋮d\\2\left(3n+5\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}6n+9⋮d\\6n+10⋮d\end{cases}}}\)

\(\Rightarrow\left(6n+10\right)-\left(6n+9\right)⋮d\)

\(\Rightarrow1⋮d\)

=>d = 1

=>UCLN(2n+3,3n+5) = 1

=>2n+3 và 3n+5 là hai số nguyên tố cùng nhau

Gọi d là UCLN(5n+6,8n+7)

\(\Rightarrow\hept{\begin{cases}5n+6⋮d\\8n+7⋮d\end{cases}\Rightarrow\hept{\begin{cases}8\left(5n+6\right)⋮d\\5\left(8n+7\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}40n+48⋮d\\40n+35⋮d\end{cases}}}\)

\(\Rightarrow\left(40n+48\right)-\left(40n+35\right)⋮d\)

\(\Rightarrow13⋮d\)

\(\Rightarrow d\in\left\{1;13\right\}\)

Để \(\left(5n+6,8n+7\right)=1\)thì \(d\ne13\)

=> UCLN(5n+6,8n+7) = 1

9 tháng 11 2016

B1) Gọi d là UCLN của (2n+3) và (3n+5)

Ta có: (2n+3):d và (3n+5):d => 3(2n+3):d và 2(3n+5):d

=> 2(3n+5)-3(2n+3):d <=> (6n+10-6n-9):d <=> 1:d. Do đó UCLN của 2 số đó là 1

Vậy chúng là 2 số nguyên tố cùng nhau.

B2) Cách giải tương tự.