Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi 3 phân số đó là \(\frac{a}{x},\frac{b}{y},\frac{c}{z}\)
Ta có các tử tỉ lệ với 3;4;5=>a:b:c=3:4:5=>\(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}\)
Đặt \(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}=k\)
=>\(\hept{\begin{cases}a=3k\\b=4k\\c=5k\end{cases}}\)
Lại có các mẫu tỉ lệ với 5,1,2=>x:y:z=5:1:2=>\(\frac{x}{5}=\frac{y}{1}=\frac{z}{2}\)
Đặt \(\frac{x}{5}=\frac{y}{1}=\frac{z}{2}=h\)
=> \(\hept{\begin{cases}x=5h\\y=h\\z=2h\end{cases}}\)
Ta có tổng 3 phân số là \(\frac{213}{70}\)
=> \(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=\frac{213}{70}\)
(=) \(\frac{3k}{5h}+\frac{4k}{h}+\frac{5k}{2h}=\frac{213}{70}\)
(=) \(\frac{k}{h}.\left(\frac{3}{5}+4+\frac{5}{2}\right)=\frac{213}{70}\)
(=) \(\frac{k}{h}=\frac{3}{7}\)
=> \(\hept{\begin{cases}\frac{a}{x}=\frac{9}{35}\\\frac{b}{y}=\frac{12}{7}\\\frac{c}{z}=\frac{15}{14}\end{cases}}\)
bài 3
Ta có \(\frac{3a-2b}{5}=\frac{2c-5a}{3}=\frac{5b-3c}{2}\)
= \(\frac{15a-10b}{25}=\frac{6c-15a}{9}=\frac{10b-6a}{4}\)
=\(\frac{15a-10b+6c-15a+10b-6a}{25+9+4}=0\)
=> \(\hept{\begin{cases}3a-2b=0\\2c-5a=0\\5b-3c=0\end{cases}\left(=\right)\hept{\begin{cases}3a=2b\\2c=5a\\5b=3c\end{cases}\left(=\right)\hept{\begin{cases}\frac{a}{2}=\frac{b}{3}\\\frac{c}{5}=\frac{a}{2}\\\frac{b}{3}=\frac{c}{5}\end{cases}}}}\)
=> \(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}=\frac{a+b+c}{2+3+5}=\frac{-50}{10}=-5\)
=> \(\hept{\begin{cases}a=-10\\b=-15\\c=-25\end{cases}}\)
ĐK : n \(\ge\)0, n \(\ne\)0
Ta có 2n - 1 \(\ge\)0
\(\Leftrightarrow2n\ge1\)
\(\Leftrightarrow n\ge\frac{1}{2}\)
Lại có \(9n+4\ge0\)
\(\Leftrightarrow9n\ge-4\)
\(\Leftrightarrow n\ge-\frac{4}{9}\)( loại )
Vậy n \(\ge\frac{1}{2}\)
a) \(\left|x\right|=2,1\)
x= +- 2,1
b) \(\left|x\right|=\frac{3}{4}\left(x< 0\right)\)
x= -3/4
c) \(\left|x\right|=-1\frac{2}{5}\)
\(x\in\varphi\)
d) \(\left|x\right|=0,35\left(x>0\right)\)
\(x=0,35\)
a) |x| = 2,1 <=> \(\orbr{\begin{cases}x=2,1\\x=-2,1\end{cases}}\)
b) |x| = 3/4 <=> x = - 3/4 ( do x < 0 )
c) ko tim dc x vi |x| >= 0 voi moi x
d) |x| = 0,35 <=> x = 0,35 ( do x>0 )
A, \(A=\frac{3n+9}{n-4}=\frac{3n-12+21}{n-4}=\frac{3\left(n-4\right)}{n-4}+\frac{21}{n-4}=3+\frac{21}{n-4}\)
Để A nguyên thì \(\frac{21}{n-4}nguy\text{ê}n\Leftrightarrow n-4\in\text{Ư}\left(21\right)=\left\{-21;-7;-3;-1;1;3;7;21\right\}\)
n-4 | -21 | -7 | -3 | -1 | 1 | 3 | 7 | 21 |
n | -17 | -3 | 1 | 3 | 5 | 9 | 11 | 25 |
TM | TM | TM | TM | TM | TM | TM | TM |
B, \(B=\frac{6n+5}{2n-1}=\frac{6n-3+8}{2n-1}=\frac{3\left(2n-1\right)+8}{2n-1}=3+\frac{8}{2n-1}\)
Để A ngyên <=> \(\frac{8}{2n-1}nguy\text{ê}n\Leftrightarrow2n-1\in\text{Ư}\left(8\right)=\left\{-8;-4;-2;-1;1;2;4;8\right\}\)
-8 | -4 | -2 | -1 | 1 | 2 | 4 | 8 | 2n-1 |
-3,5 | -1,5 | -0,5 | 0 | 1 | 1,5 | 2,5 | 4,5 | n |
loại | loại | loại | TM | TM | loại | loại | loại |
pạn có sách nâng cao và phát triển toán 7 ko trong đó có bài này. bài 7
Bài 1:Giải:
Nếu \(n\) lẻ thì \(2n\equiv-1\) (\(mod\) \(3\))
Từ \(PT\Rightarrow z^2\equiv-1\) ( \(mod\) \(3\)) (loại)
Nếu \(n\) chẵn thì \(n=2m\left(m\in N\right)\)
\(PT\) trở thành:
\(z^2-2^{2m}=153\) Hay \(\left(z-2m\right)\left(z+2m\right)=153\)
\(\Rightarrow z+2m\) và \(z-2m\inƯ\left(153\right)\)
\(\Leftrightarrow\) Ta tìm được: \(\left\{{}\begin{matrix}m=2\\z=13\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}n=4\\z=13\end{matrix}\right.\)
Vậy \(\left(n;z\right)=\left(4;13\right)\)
Bài 2:
b) Theo đề bài ta có:
\(35\left(x+y\right)=210\left(x-y\right)=12x.y\)
Chia các tích trên cho \(BCNN\left(35;210;12\right)=420\) ta được:
\(\dfrac{35\left(x+y\right)}{420}=\dfrac{210\left(x-y\right)}{420}=\dfrac{12xy}{420}\)
Hay \(\dfrac{x+y}{12}=\dfrac{x-y}{2}=\dfrac{xy}{35}\left(1\right)\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x+y}{12}=\dfrac{x-y}{2}=\dfrac{\left(x+y\right)+\left(x-y\right)}{12+2}=\dfrac{\left(x+y\right)-\left(x-y\right)}{12-2}\)
\(\Leftrightarrow\dfrac{x+y}{12}=\dfrac{x-y}{2}=\dfrac{x}{7}=\dfrac{y}{5}\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\)
\(\Leftrightarrow\dfrac{xy}{35}=\dfrac{x}{7}=\dfrac{y}{5}=\dfrac{xy}{7y}=\dfrac{xy}{5x}\)
Mà \(\left\{{}\begin{matrix}x>0\\y>0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}7y=35\\5x=35\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y=5\\x=7\end{matrix}\right.\)
Vậy hai số nguyên dương \(x;y\) là \(7;5\)
bạn giải thích thêm cái đoaạn từ 1 và 2 suy ra đk k
Đinh Tuấn Việt
Goi d la UCLN(2n - 1,9n + 4), ta co:
2n - 1 chia het cho d => 18n - 9
9n + 4 chia het cho d => 18n + 8
=> (18n-9) - (18n+8) chia het cho d
=> (18n - 9 - 18n - 8) chia het cho d
=> 1 chia het cho d
=> d = 1
Vay UCLN cua 2n - 1 va 9n + 4 la 1