\(\in\) N )

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 11 2017

Đinh Tuấn Việt

11 tháng 11 2017

Goi d la UCLN(2n - 1,9n + 4), ta co:

2n - 1 chia het cho d => 18n - 9

9n + 4 chia het cho d => 18n + 8

=> (18n-9) - (18n+8) chia het cho d

=> (18n - 9 - 18n - 8) chia het cho d

=> 1 chia het cho d

=> d = 1 

Vay UCLN cua 2n - 1 va 9n + 4 la 1

14 tháng 11 2018

Gọi 3 phân số đó là \(\frac{a}{x},\frac{b}{y},\frac{c}{z}\)

Ta có các tử tỉ lệ với 3;4;5=>a:b:c=3:4:5=>\(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}\)

Đặt \(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}=k\)

=>\(\hept{\begin{cases}a=3k\\b=4k\\c=5k\end{cases}}\)

Lại có các mẫu tỉ lệ với 5,1,2=>x:y:z=5:1:2=>\(\frac{x}{5}=\frac{y}{1}=\frac{z}{2}\)

Đặt \(\frac{x}{5}=\frac{y}{1}=\frac{z}{2}=h\)

=> \(\hept{\begin{cases}x=5h\\y=h\\z=2h\end{cases}}\)

Ta có tổng 3 phân số là \(\frac{213}{70}\)

=> \(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=\frac{213}{70}\)

(=) \(\frac{3k}{5h}+\frac{4k}{h}+\frac{5k}{2h}=\frac{213}{70}\)

(=) \(\frac{k}{h}.\left(\frac{3}{5}+4+\frac{5}{2}\right)=\frac{213}{70}\)

(=) \(\frac{k}{h}=\frac{3}{7}\)

=> \(\hept{\begin{cases}\frac{a}{x}=\frac{9}{35}\\\frac{b}{y}=\frac{12}{7}\\\frac{c}{z}=\frac{15}{14}\end{cases}}\)

14 tháng 11 2018

bài 3

Ta có \(\frac{3a-2b}{5}=\frac{2c-5a}{3}=\frac{5b-3c}{2}\)

\(\frac{15a-10b}{25}=\frac{6c-15a}{9}=\frac{10b-6a}{4}\)

=\(\frac{15a-10b+6c-15a+10b-6a}{25+9+4}=0\)

=> \(\hept{\begin{cases}3a-2b=0\\2c-5a=0\\5b-3c=0\end{cases}\left(=\right)\hept{\begin{cases}3a=2b\\2c=5a\\5b=3c\end{cases}\left(=\right)\hept{\begin{cases}\frac{a}{2}=\frac{b}{3}\\\frac{c}{5}=\frac{a}{2}\\\frac{b}{3}=\frac{c}{5}\end{cases}}}}\)

=> \(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}=\frac{a+b+c}{2+3+5}=\frac{-50}{10}=-5\)

=> \(\hept{\begin{cases}a=-10\\b=-15\\c=-25\end{cases}}\)

ĐK : n \(\ge\)0, n \(\ne\)0

Ta có 2n - 1 \(\ge\)0

\(\Leftrightarrow2n\ge1\)

\(\Leftrightarrow n\ge\frac{1}{2}\)

Lại có \(9n+4\ge0\)

\(\Leftrightarrow9n\ge-4\)

\(\Leftrightarrow n\ge-\frac{4}{9}\)( loại )

Vậy n \(\ge\frac{1}{2}\)

9 tháng 8 2019

T nghĩ

Trong câu hỏi tương tự có í

Xem thử ik !

9 tháng 9 2016

a) \(\left|x\right|=2,1\)

x= +- 2,1

b) \(\left|x\right|=\frac{3}{4}\left(x< 0\right)\)

x= -3/4

c) \(\left|x\right|=-1\frac{2}{5}\)

\(x\in\varphi\)

d) \(\left|x\right|=0,35\left(x>0\right)\)

\(x=0,35\)

9 tháng 9 2016

a) |x| = 2,1 <=> \(\orbr{\begin{cases}x=2,1\\x=-2,1\end{cases}}\)

b) |x| = 3/4 <=> x = - 3/4 ( do x < 0 )

c) ko tim dc x vi |x| >= 0 voi moi x

d) |x| = 0,35 <=> x = 0,35 ( do x>0 )

18 tháng 8 2016

 A, \(A=\frac{3n+9}{n-4}=\frac{3n-12+21}{n-4}=\frac{3\left(n-4\right)}{n-4}+\frac{21}{n-4}=3+\frac{21}{n-4}\)

Để A nguyên thì \(\frac{21}{n-4}nguy\text{ê}n\Leftrightarrow n-4\in\text{Ư}\left(21\right)=\left\{-21;-7;-3;-1;1;3;7;21\right\}\) 

n-4  -21  -7  -3  -1  1  3   7   21   
n-17-313591125
 TMTMTMTMTMTMTMTM

B, \(B=\frac{6n+5}{2n-1}=\frac{6n-3+8}{2n-1}=\frac{3\left(2n-1\right)+8}{2n-1}=3+\frac{8}{2n-1}\) 

Để A ngyên <=> \(\frac{8}{2n-1}nguy\text{ê}n\Leftrightarrow2n-1\in\text{Ư}\left(8\right)=\left\{-8;-4;-2;-1;1;2;4;8\right\}\)

-8 -4 -2 -1 2n-1
-3,5-1,5-0,501  1,52,54,5n
loạiloạiloạiTMTMloạiloạiloại 
26 tháng 6 2015

pạn có sách nâng cao và phát triển toán 7 ko trong đó có bài này. bài 7

23 tháng 3 2017

Bài 1:Giải:

Nếu \(n\) lẻ thì \(2n\equiv-1\) (\(mod\) \(3\))

Từ \(PT\Rightarrow z^2\equiv-1\) ( \(mod\) \(3\)) (loại)

Nếu \(n\) chẵn thì \(n=2m\left(m\in N\right)\)

\(PT\) trở thành:

\(z^2-2^{2m}=153\) Hay \(\left(z-2m\right)\left(z+2m\right)=153\)

\(\Rightarrow z+2m\)\(z-2m\inƯ\left(153\right)\)

\(\Leftrightarrow\) Ta tìm được: \(\left\{{}\begin{matrix}m=2\\z=13\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}n=4\\z=13\end{matrix}\right.\)

Vậy \(\left(n;z\right)=\left(4;13\right)\)

Bài 2:

b) Theo đề bài ta có:

\(35\left(x+y\right)=210\left(x-y\right)=12x.y\)

Chia các tích trên cho \(BCNN\left(35;210;12\right)=420\) ta được:

\(\dfrac{35\left(x+y\right)}{420}=\dfrac{210\left(x-y\right)}{420}=\dfrac{12xy}{420}\)

Hay \(\dfrac{x+y}{12}=\dfrac{x-y}{2}=\dfrac{xy}{35}\left(1\right)\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x+y}{12}=\dfrac{x-y}{2}=\dfrac{\left(x+y\right)+\left(x-y\right)}{12+2}=\dfrac{\left(x+y\right)-\left(x-y\right)}{12-2}\)

\(\Leftrightarrow\dfrac{x+y}{12}=\dfrac{x-y}{2}=\dfrac{x}{7}=\dfrac{y}{5}\left(2\right)\)

Từ \(\left(1\right)\)\(\left(2\right)\)

\(\Leftrightarrow\dfrac{xy}{35}=\dfrac{x}{7}=\dfrac{y}{5}=\dfrac{xy}{7y}=\dfrac{xy}{5x}\)

\(\left\{{}\begin{matrix}x>0\\y>0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}7y=35\\5x=35\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y=5\\x=7\end{matrix}\right.\)

Vậy hai số nguyên dương \(x;y\)\(7;5\)

25 tháng 3 2017

bạn giải thích thêm cái đoaạn từ 1 và 2 suy ra đk k

9 tháng 3 2016

giup minh di mai minh phai nop rui

giup minh minh se k cho nha