Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(\frac{2n+9}{n+3}+\frac{5n+17}{n+3}-\frac{3n}{n+3}=\frac{2n+9+5n+17-3n}{n+3}\)
\(=\frac{4n+26}{n+3}\)
\(=4+\frac{14}{n+3}\)
Để biểu thức có giá trị nguyên thì \(\frac{14}{n+3}\) có giá trị nguyên \(\Rightarrow\)14 chia hết cho n+3
=>n+3 là ước của 14 là -1;1;-2;2;7;-7;-14;14
-Nếu n+3=-1 thì n=-4,khi đó A=-10 (thỏa mãn)
-Nếu n+3=1 thì n=-2,khi đó A=18 (thỏa mãn)
-Nếu n+3=2 thì n=-1,khi đó A=11 (thỏa mãn)
-Nếu n+3=-2 thì n=-5,khi đó A=-3 (thỏa mãn)
-Nếu n+3=7 thì n=4, khi đó A=6 (thoả mãn)
-Nếu n+3=-7 thì n=-10,khi đó A=2 (thỏa mãn)
-Nếu n+3=14 thì n=11,khi đó A=5 (thỏa mãn)
-Nếu n+3=-14 thì n=-15,khi đó A=3 (thỏa mãn).
Ta có :
\(2n-1=2n-8+7=2\left(n-4\right)+7\) chia hết cho \(n-4\)\(\Rightarrow\)\(7⋮\left(n-4\right)\)\(\Rightarrow\)\(\left(n-4\right)\inƯ\left(7\right)\)
Mà \(Ư\left(7\right)=\left\{1;-1;7;-7\right\}\)
Suy ra :
\(n-4\) | \(1\) | \(-1\) | \(7\) | \(-7\) |
\(n\) | \(5\) | \(3\) | \(11\) | \(-3\) |
Vậy \(n\in\left\{5;3;11;-3\right\}\)
Năm mới zui zẻ ^^
1) \(\frac{5-2n}{n-1}=\frac{5-2n+2-2}{n-1}=\frac{5-2-2.\left(n-1\right)}{n-1}=\frac{3}{n-1}-\frac{2.\left(n-1\right)}{n-1}=\frac{3}{n-1}+2\)
Để biểu thức trên nguyên thì \(\frac{3}{n-1}\) nguyên => \(3⋮n-1\)
=> \(n-1\inƯ\left(3\right)\)
=> \(n-1\in\left\{1;-1;3;-3\right\}\)
=> \(n\in\left\{2;0;4;-2\right\}\)
Vậy \(n\in\left\{2;0;4;-2\right\}\)
2) \(\frac{3n-4}{n-1}=\frac{3n-3-1}{n-1}=\frac{3.\left(n-1\right)-1}{n-1}=\frac{3.\left(n-1\right)}{m-1}-\frac{1}{n-1}=3-\frac{1}{n-1}\)
Để biểu thức trên nguyên thì \(\frac{1}{n-1}\) nguyên
=> \(1⋮n-1\)
=> \(n-1\inƯ\left(1\right)\)
=> \(n-1\in\left\{1;-1\right\}\)
=> \(n\in\left\{2;0\right\}\)
Vậy \(n\in\left\{2;0\right\}\)
c) \(\frac{6n-5}{2n-4}=\frac{6n-12+7}{2n-4}=\frac{3.\left(2n-4\right)+5}{2n-4}=\frac{3.\left(2n-4\right)}{2n-4}+\frac{5}{2n-4}=3+\frac{5}{2n-4}\)
Để biểu thức trên nguyên thì \(\frac{5}{2n-4}\) nguyên => \(5⋮2n-4\)
=> \(2n-4\inƯ\left(5\right)\)
Mà 2n - 4 là số chẵn \(\forall\) n nguyên nên không tìm được giá trị của n thỏa mãn vì 5 là số lẻ, không có ước chẵn
Vậy không tồn tại giá trị của n thỏa mãn đề bài
A, \(A=\frac{3n+9}{n-4}=\frac{3n-12+21}{n-4}=\frac{3\left(n-4\right)}{n-4}+\frac{21}{n-4}=3+\frac{21}{n-4}\)
Để A nguyên thì \(\frac{21}{n-4}nguy\text{ê}n\Leftrightarrow n-4\in\text{Ư}\left(21\right)=\left\{-21;-7;-3;-1;1;3;7;21\right\}\)
n-4 | -21 | -7 | -3 | -1 | 1 | 3 | 7 | 21 |
n | -17 | -3 | 1 | 3 | 5 | 9 | 11 | 25 |
TM | TM | TM | TM | TM | TM | TM | TM |
B, \(B=\frac{6n+5}{2n-1}=\frac{6n-3+8}{2n-1}=\frac{3\left(2n-1\right)+8}{2n-1}=3+\frac{8}{2n-1}\)
Để A ngyên <=> \(\frac{8}{2n-1}nguy\text{ê}n\Leftrightarrow2n-1\in\text{Ư}\left(8\right)=\left\{-8;-4;-2;-1;1;2;4;8\right\}\)
-8 | -4 | -2 | -1 | 1 | 2 | 4 | 8 | 2n-1 |
-3,5 | -1,5 | -0,5 | 0 | 1 | 1,5 | 2,5 | 4,5 | n |
loại | loại | loại | TM | TM | loại | loại | loại |
pạn có sách nâng cao và phát triển toán 7 ko trong đó có bài này. bài 7
a. Ta có:A = 2n-1 / n-3 = 2n-6+6-1 / n-3 = 2(n-3)+5 / n-3 = 2(n-3)/n-3+ 5/ n-3= 2+ (5/ n-3)
Để A nguyên thì 2+5/n-3 nguyên => 5/n-3 nguyên hay 5 chia hết cho n-3
=>n-3 thuộc ước của 5
=> n-3 thuộc {5, -5,1,-1}
=> n thuộc { 8, -2, 4, 2}
b. Để A có GTLN thì 5/n-3 có GTLN=> n-3 là số nguyên dương nhỏ nhất=> n - 3 = 1 => n = 1+3 = 4
=> A = 2 + 5 = 7
vậy GTLN của A = 7 khi n = 4
a) Để A có giá trị là số nguyên
Thì (2n—1) chia hết cho (n—3)
==> [2(n—3)+4) chia hết cho (n—3)
Vì (n—3) chia hết cho (n—3)
Nên (2+4) chia hết cho (n—3)
==> 6 chia hết cho (n—3)
==> (n—3) € Ư(6)
(n—3) €{1;-1;2;-2;3;-3;6;-6}
TH1: n—3=1
n=1+3
n=4
TH2: n—3=-1
n=-1+3
n=2
TH3: n—3=2
n=2+3
n=5
TH4: n—3=-2
n=-2+3
n=1
TH5:n—3=3
n=3+3
n=6
TH6: n—3=—3
n=-3+3
n=0
TH7: n—3=6
n=6+3
n=9
TH8: n—3=-6
n=-6+3
n=-3
Mình chỉ biết 1 câu thôi nha bạn
Vì A là số tự nhiên \(\Rightarrow\) \(A=\frac{n^2+3n}{8}\in N\Rightarrow n^2+3n⋮8\)
\(\Rightarrow n.\left(n+3\right)⋮8\)
Mặt khác (n+3) - n =3 là số lẻ \(\Rightarrow\) n+3 và n không cùng tính chẵn lẻ
\(\Rightarrow\orbr{\begin{cases}n⋮8\\n+3⋮8\end{cases}}\)
TH1 : \(n⋮8\Rightarrow n=8k\)( k \(\in\)N* ) \(\Rightarrow A=\frac{\left(8k\right)^2+8k.3}{8}=8k^2+3k=k.\left(8k+3\right)\)
Mà A là số nguyên tố \(\Rightarrow\)k.(8k+3) là số nguyên tố (1)
Lại có k \(\in\) N* \(\Rightarrow8k+3\in\)N*
8k+3 > k kết hợp (1)
\(\Rightarrow\hept{\begin{cases}k=1\\8k+3laSNT\end{cases}\Rightarrow8k+3=8.1.3=11}\)là SNT ( t/m)
\(\Rightarrow n=8.1=8\)
TH2: \(n+3⋮8\Rightarrow n+3=8k\)( k \(\in\) N* )
\(\Rightarrow n=8k-3\Rightarrow A=\frac{\left(8k-3\right)^2+3.\left(8k-3\right)}{8}\)
\(=\frac{\left(8k-3\right).\left(8k-3+3\right)}{8}=\frac{\left(8k-3\right).8k}{8}=k.\left(8k-3\right)\)
Mà A là SNT \(\Rightarrow k.\left(8k-3\right)\)là SNT (2)
Lại có : k\(\in\)N*\(\Rightarrow k\ge1\Rightarrow8k-3\ge5>0\)
k \(\in\)N* \(\Rightarrow8k-3\)\(\in\)Z ( ngoặc 2 dòng )
\(\Rightarrow8k-3\in\)N* kết hợp (2)
\(\Rightarrow\)+) k=1 và 8k-3 là SNT \(\Rightarrow\)k=1 và 8k-3=8.1-3=5 là SNT \(\Rightarrow n=5\)
+) 8k-3 =1 và k là SNT \(\Rightarrow\)k \(\notin\)N* mà k là SNT ( loại )
Vậy \(n\in\left\{5;8\right\}\)
( lưu ý nhé có chỗ ko viết được TV nên tui ghi ko có dấu )
a) Để A thuộc Z thì 3 phải chia hết cho n-1
=> n-1 thuộc Ư(3)={1;3;-1;-3}
=> n thuộc {2;4;0;-2}
b) ta có : A=(6n+5)/(2n-1)=[3(2n-1)+8]/(2n-1)=3+[8/(2n-1)]
Để A thuộc Z thì 8 chia hết cho 2n-1
=>2n-1 thuộc Ư(8)={1;2;4;8;-1;-2;-4;-8}
=>2n thuộc { 2;0}
=> n thuộc {1;0}
Câu c và bài 2 bạn tự làm đi nghe
Bạn nên đổi chử thuộc và chia hết thành đấu nghe