Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi d là ƯCLN của 2n + 1 và n + 1
\(\Rightarrow\)2n + 1 \(⋮\)d và n + 1\(⋮\)d
\(\Rightarrow\)( 2n + 1 ) - ( n + 1 )\(⋮\)d
\(\Rightarrow\)( 2n + 1 ) -
a; Gọi ƯCLN(n + 1; 3n + 4) = d
Ta có: \(\left\{{}\begin{matrix}n+1⋮d\\3n+4⋮d\end{matrix}\right.\) ⇒ \(\left\{{}\begin{matrix}3n+3⋮d\\3n+4⋮d\end{matrix}\right.\) ⇒ 3n + 3 - 3n - 4 ⋮ d
⇒ (3n -3n) - (4 - 3) ⋮ d ⇒ 0 - 1⋮ d ⇒ 1 ⋮ d ⇒ d \(\in\) Ư(1) = 1
Vậy ƯCLN(n + 1; 3n + 4) = 1
ƯC(n +1; 3n +4) = 1
Gọi ƯCLN(30n + 4; 20n + 3) = d
Ta có: \(\left\{{}\begin{matrix}30n+4⋮d\\20n+3⋮d\end{matrix}\right.\) ⇒ \(\left\{{}\begin{matrix}60n+8⋮d\\60n+6⋮d\end{matrix}\right.\) ⇒ 60n + 8 - 60n - 6 ⋮ d
⇒ (60n - 60n) +(8 - 6) ⋮ d ⇒ 0 +2 ⋮ d ⇒ 2 ⋮ d
⇒ d \(\in\) Ư(2)
Vậy Ước chung lớn nhất của (30n + 4 và 20n + 3) là 2
Gọi UC ( n + 2 ; n - 1 ) = d
=> n + 2 chia hết cho d , n - 1 chia hết cho d
=> n + 2 - n + 1 chia hết cho d
=> 3 chia hết cho d
=> d thuộc Ư ( 3 ) = ( -3 ; -1 ; 1 ; 3 }
Vậy ƯC ( n + 2 ; n - 1 } = { -3 ; -1 ; 1 ; 3 }
Gọi d thuộc ước chung của n+3 ; 2n+5 ( d thuộc Z )
=> + ) n+3 chia hết cho d hay 2.(n+3) chia hết cho d
+) 2n+5 chia hết cho d
=> 2(n+3) - (2n +5) chia hết cho d
<=> 2n+6 -2n-5 chia hết cho d
<=> 1 chia hết cho d => d thuộc { 1 : -1 }
Gọi d là ƯC của n+3 ;2n+5 (d€Z)
Suy ra
+)n+3:d =^ 2(2n+3)
+) 2n+5 :d
Suy ra : 2(n+3) -- (2n+5) : d
=^ 2n+6 -- 2n+5 :d
=^ 1 :d
=^ d€ ( 1; -1)
= 1
chúc bạn học tốt . nếu được thì kb với mik và giải bài giúp mik nha
Gọi ƯC của n,n+,n+2 là d (d thuộc N*)
=> n chia hết cho d
n+1 chia hết cho d mà n chia hết cho d => 1 chia hết cho d=> d thuộc Ư(1)=> d thuộc tập hợp 1,-1
n+2 chia hết cho d mà n chia hết cho d=> 2 chia hết cho d=> d thuộc Ư(2) => d thuộc tập hợp 1,-1,2,-2
=> d thuộc tập hợp 1,-1