K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 11 2018

Tên giống mình thế!!!!

27 tháng 11 2018

Ahihi

a ) Gọi d là ƯCLN của 4n+3 và 3n+5

=> 4n+3 chia hết cho d và 3n+5 chia hết cho d

=> 12n+9 chia hết cho d và 12n +20 chia hết cho d

=> 11chia hét cho d

=.>d thuộc Ư ( 11)= ( 1;11)

Vạy Ưc (4n+3; 3n+5) =( 1;11)

Ngày mai mình sẽ trả lời tiếp vì bây giờ mình bận rồi và nhớ dùng kí hiệu chia hết và thuộc . Chứ lúc trả lời câu a mình không ghi được kí hiệu đó

10 tháng 12 2016

a) Gọi ƯC cua 2n+1 ; 3n+1 là d

\(\begin{cases}2n+1⋮d\\3n+1⋮d\end{cases}\)

\(\Rightarrow3\left(2n+1\right)-2\left(3n+1\right)⋮d\\ \Rightarrow6n+3-6n-2⋮d\\ \Rightarrow1⋮d\\ d=1 \)

b) Gọi ƯC cua 5n+6 và 8n+7 là d

\(\Rightarrow8\left(5n+6\right)-5\left(8n+7\right)⋮d\\\Rightarrow 40n+48-40n-35⋮d\\\Rightarrow5⋮d\\ d=5 \)

 

 

31 tháng 3 2017

c)7n+10 và 5n+7

Gọi d=(7n+10,5n+7) với n \(\in\) N và d \(\in\) N*

\(\Rightarrow\)7n+10\(⋮\)d\(\Rightarrow\)5(7n+10)\(⋮\)d\(\Rightarrow\)35n+50\(⋮\)d (1)

\(\Rightarrow\)5n+7\(⋮\)d \(\Rightarrow\)7(5n+7) \(⋮\)d\(\Rightarrow\)35n+49\(⋮\)d (2)

Từ (1) và (2) suy ra: (35n+50)-(35n+49)\(⋮\)d

35n+50-35n-49 \(⋮\)d

(35n-35n)+(50-49)\(⋮\)d

0 + 1 \(⋮\)d

1 \(⋮\)d

Vì:1\(⋮\)d nên d\(\in\)Ư(1)

Mà:Ư(1)={1} nên d=1

Vậy 2n+1 và 3n+1 là hai số nguyên tố cùng nhau

2 tháng 6 2015

Đặt d  ƯC(3n+4 ; 5n +1)

Ta có:

3n + 4 chia hết cho d và 5n + 1 chia hết cho d nên 5.(3n + 4) chia hết cho d và  3.(5n + 1) chia hết cho d.

⇒ (15n + 20) - (15n + 3) = 15n + 20 - 15n - 3 = (15n - 15n) + (20 - 3) = 17 chia hết cho d.

Vì n  N suy ra d  {1 ; 17}

Để ƯC(3n+4 ; 5n+1)  1 thì phải có 3n + 4 chia hết cho 17 suy ra 3n + 4 - 34 = 3n + (-30) = 3n - 30 = 3n - 3.10 = 3.(n - 10) chia hết cho 17 (vì 34 cũng chia hết cho 17).

Ta lại có ƯCLN(3 ; 17) = 1 nên n - 10 chia hết cho 17.

 n - 10  B(17)

Do n < 30 nên n  = 10 hoặc n = 27.

             Vậy n = 10 hoặc n = 27 để thỏa mãn đề bài.

25 tháng 10 2016

a) n + 3 chia hết cho n

Vì n chia hết cho n nên để n + 3 chia hết cho n thì 3 chia hết cho n

Từ đó suy ra : n \(\in\)Ư ( 3 ) = { 1 ; 3 }

b) 35 - 12n chia hết cho n ( n < 3 )

Vì 12n chia hết cho n nên để 35 - 12n chia hết cho n thì 35 chia hết cho n

từ đó suy ra : n \(\in\)Ư ( 35 ) = { 1 ; 5 ; 7 ; 35 }

Mà n < 3 nên n = 1

Vậy n = 1

c) 16 - 3n chia hết cho n + 4 ( n < 6 )

theo bài ra ta có : 

16 - 3n chia hết cho n + 4

28 . ( 3n + 12 ) chia hết cho n + 4

28 - 3 . ( n + 4 ) chia hết cho n + 4

vì 3 . ( n + 4 ) chia hết cho n + 4 nên để 28 - 3 . ( n + 4 ) chia hết cho n + 4 thì 28 chia hết cho n + 4

Từ đó suy ra : n + 4 \(\in\)Ư ( 28 ) = { 1 ; 2 ; 4 ; 7 ; 14 ; 28 }

mà n < 6 nên n = { 1 ; 2 ; 4 }

vậy n = { 1 ; 2 ; 4 }

d) 5n + 2 chia hết cho 9 - 2n ( n < 5 )

ta có : 9 - 2n chia hết cho 9 - 2n nên 5 . ( 9 - 2n ) chia hết cho 9 - 2n ( 1 )

Vì 5n + 2 chia hết cho 9 - 2n nên 2 . ( 5n + 2 ) chia hết cho 9 - 2n ( 2 )

Từ ( 1 ) và ( 2 ) ta có :

5 . ( 9 - 2n ) + 2 . ( 5n + 2 ) chia hết cho 9 - 2n

=> 45 - 10n + 10n + 4 chia hết cho 9 - 2n

45 + 4 chia hết cho 9 - 2n

49 chia hết cho 9 - 2n

để 5n + 2 chia hết cho 9 - 2n thì 49 chia hết cho 9 - 2n

Vậy 9 - 2n \(\in\)Ư ( 49 ) = { 1 ; 7 ; 49 }

Vì 9 - 2n \(\le\)9 nên 9 - 2n \(\in\){ 1 ; 7 }

\(\Rightarrow\orbr{\begin{cases}9-2n=7\\9-2n=1\end{cases}\Rightarrow\orbr{\begin{cases}n=1\\n=4\end{cases}}}\)

19 tháng 5 2017

a) n + 3 chia hết cho n ( n thuộc N )

Ta có : n chia hết cho n

           n + 3 chia hết cho n

=> 3 chia hết cho n

=> n thuộc Ư ( 3 )

=> n thuộc { 1 ; 3 }