Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt A = 1×2 + 2×3 + 3×4 + ... + 19×20
⇒ 3A = 1×2×3 + 2×3×3 + 3×4×3 + ... + 19×20×3
= 1×2×3 + 2×3×(4 - 1) + 3×4×(5 - 2) + ... + 19×20×(21 - 18)
= 1×2×3 - 1×2×3 + 2×3×4 - 2×3×4 + 3×4×5 - ... - 18×19×20 + 19×20×21
= 19×20×21
= 7980
⇒ A = 7980 : 3 = 2660
Đặt A=1.2+2.3+3.4+...+99.100
3A=1.2.3+2.3.(4-1)+3.4.(5-2)+...+99.100.(101-98)
3A=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+99.100.101-98.99.100
3A=99.100.101
A=333300
Đặt A=1.2+2.3+3.4+...+99.100
3A=1.2.3+2.3.(4-1)+3.4.(5-2)+...+99.100.(101-98)
3A=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+99.100.101-98.99.100
3A=99.100.101
A=333300
S = 1.2 + 2.3 + 3.4+.....+99.100
3S=1.2.3+2.3.(4-1) + ..... + 99.100.(101-98)
3S = 1.2.3 + 2.3.4 - 1.2.3 + 99.100.101-98.99.100
3S = 99.100.101 = 999900
S = 999900 : 3 = 333300
\(A=1\times2+2\times3+3\times4+...+89\times90\)
\(3\times A=1\times2\times3+2\times3\times\left(4-1\right)+3\times4\times\left(5-2\right)+...+89\times90\times\left(91-88\right)\)
\(=1\times2\times3+2\times3\times4-1\times2\times3+3\times4\times5-2\times3\times4+...+89\times90\times91-88\times89\times90\)
\(=89\times90\times91\)
\(\Leftrightarrow A=\dfrac{89\times90\times91}{3}=242970\)
S= 1x2+2x3+3x4+4x5+...+ 20x21
3xS=3x( 1x2+2x3+3x4+4x5+...+ 20x21 )
3xS = 1x2x3+2x3x3+3x4x3+....+20x21x3
3xS = 1x2x3 + 2x3x(4-1) + 3x4x(5-2)+........+20x21x(22-19)
3xS= 1x2x3 + 2x3x4 - 1x2x3 + 3x4x5 - 2x3x4 +......+20x21x22 - 19x20x21
3xS = 20x21x22
S = 20x21x22 /3
S= 1x2+2x3+3x4+4x5+...+ 20x21
3xS=3x( 1x2+2x3+3x4+4x5+...+ 20x21 )
3xS = 1x2x3+2x3x3+3x4x3+....+20x21x3
3xS = 1x2x3 + 2x3x(4-1) + 3x4x(5-2)+........+20x21x(22-19)
3xS= 1x2x3 + 2x3x4 - 1x2x3 + 3x4x5 - 2x3x4 +......+20x21x22 - 19x20x21
3xS = 20x21x22
S = 20x21x22 /3
k mk nha
=>3D =1.2.3 + 2.3.3 + 3.4.3 + ..... + 99.100 .3
=> 3D = 1.2.3 - 2.3. ( 4-1) + 3.4. (5-2) + ... + 98.99 (100 - 97 ) + 99 . 100 . ( 101-98)
=> 3D= 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 +... + 98.99.100 -97.98.99 +99.100.101-98.99.100
=> 3D= 99.100.101
=> 3D= 999 900
D= 999 900 .3 = 333 300
=>3D =1.2.3 + 2.3.3 + 3.4.3 + ..... + 99.100 .3
=> 3D = 1.2.3 - 2.3. ( 4-1) + 3.4. (5-2) + ... + 98.99 (100 - 97 ) + 99 . 100 . ( 101-98)
=> 3D= 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 +... + 98.99.100 -97.98.99 +99.100.101-98.99.100
=> 3D= 99.100.101
=> 3D= 999 900
D= 999 900 .3 = 333 300
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{2009}-\dfrac{1}{2010}\\ =1-\dfrac{1}{2010}=\dfrac{2009}{2010}\)
giải hộ mình với nhanh lên
Ta có:
\(E=1.2+2.3+3.4+....+1001.1002\)
\(\Rightarrow3E=1.2.\left(3-0\right)+2.3.\left(4-1\right)+3.4.\left(5-2\right)+....+1001.1002.\left(1003-1000\right)\)
\(\Rightarrow3E=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+....+1001.1002.1003-1000.1001.1002\)
\(\Rightarrow3E=1001.1002.1003\)
\(\Leftrightarrow E=\frac{1001.1002.1003}{3}=335337002\)