Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt A , ta có :
\(A=\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+...+\frac{1}{999\times1000}+1\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{4}-\frac{1}{4}+...+\frac{1}{999}-\frac{1}{1000}+1\)
\(A=2-\frac{1}{1000}\)
\(A=\frac{2000}{1000}-\frac{1}{1000}\)
\(A=\frac{1999}{1000}\)
Đặt \(A=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}+1=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}+1\)
\(A=1-\frac{1}{1000}+1=\frac{999}{1000}+1=\frac{1999}{1000}\)
Vậy \(A=\frac{1999}{1000}\)
Giải:
Ta có: 1/1x2+1/2x3+1/3x4+...+1/999x1000+1
= 1 - 1/2 + 1/2-1/3 + 1/3-1/4 + ...+ 1/999 - 1/1000 + 1
= 1 - 1/1000 + 1
= 2 - 1/1000
= 1999/1000
Ai tích mk mk sẽ tích lại
Ko đc Coppy
CHỉ đc viết thui nha mk cho 1 tích
\(S=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2017}-\frac{1}{2018}\)
\(S=1-\frac{1}{2018}\)
\(S=\frac{2018}{2018}-\frac{1}{2018}\)
\(S=\frac{2017}{2018}\)
\(S=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2017.2018}.\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-...-\frac{1}{2017}+\frac{1}{2017}-\frac{1}{2018}\)
\(=1-\frac{1}{2018}=\frac{2017}{2018}\)
A=\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)
A=\(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)
A=\(1-\frac{1}{50}\)
A=\(\frac{49}{50}\)
1.
a.
\(\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+\frac{1}{4\times5}+\frac{1}{5\times6}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}=1-\frac{1}{6}=\frac{5}{6}\)
b.
Tích có 100 thừa số
=> n = 100
\(\left(100-1\right)\times\left(100-2\right)\times\left(100-3\right)\times...\times\left(100-99\right)\times\left(100-100\right)\)
\(=\left(100-1\right)\times\left(100-2\right)\times\left(100-3\right)\times...\times\left(100-99\right)\times0\)
\(=0\)
2.
a.
\(135\times789789-789\times135135=1001\times\left(135\times789-789\times135\right)=1001\times0=0\)
b.
\(\left(28\times9696-96\times2828\right)\div\left(1\times2\times3\times...\times2015\times2016\right)\)
\(=\left[101\times\left(28\times96-96\times28\right)\right]\div\left(1\times2\times3\times...\times2015\times2016\right)\)
\(=\left(101\times0\right)\div\left(1\times2\times3\times...\times2015\times2016\right)\)
\(=0\div\left(1\times2\times3\times...\times2015\times2016\right)\)
\(=0\)
3.
a.
\(\left[\left(x+32\right)-17\right]\times2=42\)
\(\left(x+32\right)-17=\frac{42}{2}\)
\(\left(x+32\right)-17=21\)
\(x+32=21+17\)
\(x+32=38\)
\(x=38-32\)
\(x=6\)
b.
\(125+\left(145-x\right)=175\)
\(145-x=175-125\)
\(145-x=50\)
\(x=145-50\)
\(x=95\)
1/1.2 +1/2.3 +1/3.4 +....+1/99.100
=1-1/2+1/2-1/3+1/3-14+.....+1/99-1/100
=1-1/100
=99/100
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{2009}-\dfrac{1}{2010}\\ =1-\dfrac{1}{2010}=\dfrac{2009}{2010}\)