Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
giúp mình đi vẽ hộ cái hình
cho đường tròn tâm O bán kính r,điểm A cố định nằm ngoài đường tròn.kẻ 2 tiếp tuyến AM,AN.Đường thẳng D đi qua A cắt đường tròn O tại B,C với AB<AC.Chứng minh 5 điểm A,M,N,O,I thuộc đường tròn
chào ng đẹp
a) tự vẽ
b) pt hoành độ 1/2x^2=3/2x-1
Giải pt bậc 2 ra có x1=..;x2=..
thay lần lượt x1=...;x2=.... vô y=1/2x^2
ta dc y1=..;y2=...
ta được 2 giao điểm của (P) và (d) là A(x1;y1);B(x2;y2)
a,y=1/2x2
bạn lập bảng giá trị :
x | -2 | -1 | 0 | 1 | 2 |
y | 2 | 1/2 | 0 | 1/2 | 2 |
sau đó thay vào vẽ parabol .
b,vì là giao điểm của (P) và (d) nên suy ra :
\(\frac{1}{2}\)x2= \(\frac{3}{2}\)x-1
chuyển thành pt bậc 2 và giải ta đk kết quả của x là hoành độ , y là tung độ của giao điểm
chúc bạn học tập tốt phần này vì nó là kiến thức quan trọng cho th vào lớp 10
1. PT hoành độ giao điểm:
x2−(2x−m2+9)=0⇔x2−2x+m2−9=0(∗)
Khi m=1
thì pt trên trở thành: x2−2x−8=0
⇔(x−4)(x+2)=0⇒x=4
hoặc x=−2
Khi x=4⇒y=x2=16
. Giao điểm thứ nhất là (4,16)
Khi x=−2⇒y=x2=4
. Giao điểm thứ hai là (−2,4)
2. (P)
và (d) cắt nhau tại 2 điểm phân biệt ⇔(∗)
có 2 nghiệm phân biệt (hai nghiệm ấy chính là giá trị của 2 hoành độ giao điểm)
⇔Δ′=1−(m2−9)>0⇔10>m2(1)
Hai giao điểm nằm về phía của trục tung, nghĩa là 2 hoành độ giao điểm x1,x2
trái dấu. Điều này xảy ra khi x1x2<0⇔m2−9<0(2)
Từ (1);(2)
suy ra m2−9<0⇔−3<m<3
1) y= 2x-4
HD: y=ax+b
.... song song: a=2 và b≠-1
..... A(1;-2) => x=1 và y=-2 và Δ....
a+b=-2
Hay 2+b=-2 (thay a=2)
<=> b=-4
KL:................
2) Xét PT hoành độ giao điểm của (P) và (d)
x2=2(m-1)x-m+3 ⇔x2-2(m-1)x+m-3 =0 (1)
*) Δ'= (1-m)2-m+3= m2-3m+4=m2-2.\(\dfrac{3}{2}\)m+\(\dfrac{9}{4}\)+\(\dfrac{7}{4}\)=\(\left(m-\dfrac{3}{2}\right)^2+\dfrac{7}{4}>0\). Vậy PT (1) có 2 nghiệm phân biệt x1; x2.
*) Theo hệ thức Viet ta có:
S=x1+x2=2(m-1) và P=x1.x2=m-3
*) Ta có: \(M=x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2\)
Thay S và P vào M ta có:
\(M=\left[2\left(m-1\right)\right]^2-2.\left(m-3\right)=4m^2-10m+10\\ =\left(2m\right)^2-2.2m.\dfrac{5}{2}+\dfrac{25}{4}+\dfrac{15}{4}=\left(2m-\dfrac{5}{2}\right)^2+\dfrac{15}{4}\)
Vì (...)2≥0 nên M= (...)2+\(\dfrac{15}{4}\)≥\(\dfrac{15}{4}\)
Vậy M nhỏ nhất khi M=\(\dfrac{15}{4}\) khi 2m-\(\dfrac{5}{2}\)=0
Phương trình hoành độ giao điểm giữa (P) và (d)
\(x^2=2x+3\)
\(\Leftrightarrow x^2-2x-3=0\)
\(\Delta=\left(-2\right)^2-4.1.\left(-3\right)=16>0\)
\(\Rightarrow x_1=\frac{-b-\sqrt{\Delta}}{2a}=\frac{2-\sqrt{16}}{2.1}=-1\)
\(x_2=\frac{-b+\sqrt{\Delta}}{2a}=\frac{2+\sqrt{16}}{2.1}=3\)
Với x1 =-1 \(\Rightarrow\) y1 = (-1)2 =1 \(\Rightarrow\) A(-1;1)
x2 =3 \(\Rightarrow\)y2 =32 =9 \(\Rightarrow\)B(3;9)
Vậy tọa độ giao điểm là A(-1;1) và B(3;9)