Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a:
b: tọa độ A là;
-x+5=4x và y=4x
=>x=1 và y=4
Tọa độ B là;
-x+5=-1/4x và y=-1/4x
=>-3/4x=-5 và y=-1/4x
=>x=5:3/4=5*4/3=20/3 và y=-1/4*20/3=-5/3
=>B(20/3;-5/3)
c: O(0;0); A(1;4); B(20/3;-5/3)
\(OA=\sqrt{1^2+4^2}=\sqrt{17}\)
\(OB=\sqrt{\left(\dfrac{20}{3}\right)^2+\left(-\dfrac{5}{3}\right)^2}=\dfrac{5\sqrt{17}}{3}\)
\(AB=\sqrt{\left(\dfrac{20}{3}-1\right)^2+\left(-\dfrac{5}{3}-4\right)^2}=\dfrac{\sqrt{818}}{3}\)
\(cosAOB=\dfrac{OA^2+OB^2-AB^2}{2\cdot OA\cdot OB}=\dfrac{-8}{17}\)
=>góc AOB tù
=>ΔOAB tù
b: Tọa độ giao điểm là:
\(\left\{{}\begin{matrix}\dfrac{1}{2}x^2-x-4=0\\y=x+4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x^2-2x-8=0\\y=x+4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-4\right)\left(x+2\right)=0\\y=x+4\end{matrix}\right.\Leftrightarrow\left(x,y\right)\in\left\{\left(4;8\right);\left(-2;2\right)\right\}\)
a, Hàm số \(\left(d_1\right)y=-2x+3\)
Cho \(y=0=>x=\dfrac{3}{2}\) ta được điểm \(\left(\dfrac{3}{2};0\right)\)
Cho \(x=0=>y=3\) ta được điểm \(\left(0;3\right)\)
Vẽ đồ thị hàm số \(\left(d_1\right)\) đi qua hai điểm trên
hàm số \(\left(d_2\right)y=x-1\)
Cho \(y=0=>x=1\) ta được điểm \(\left(1;0\right)\)
Cho \(x=0=>y=-1\) ta được điểm \(\left(0;-1\right)\)
Vẽ đồ thị hàm số \(\left(d_2\right)\) đi qua hai điểm trên
# Bạn có thể tự vẽ nhé !!
b, Tọa độ giao điểm \(\left(d_1\right);\left(d_2\right)\) là nghiệm của pt
\(-2x+3=x-1\\ =>-3x=-4\\ =>x=\dfrac{4}{3}\)
Thay \(x=\dfrac{4}{3}\) vào \(\left(d_2\right)\)
\(\Rightarrow y=\dfrac{4}{3}-1=\dfrac{1}{3}\)
Vậy tọa độ giao điểm là : \(\left(\dfrac{4}{3};\dfrac{1}{3}\right)\)
c, Giả sử \(\left(d_3\right)y=ax+b\)
\(\left(d_3\right)\) đi qua \(A\left(-2;1\right)\) và song song với đường thẳng \(\left(d_1\right)y=-2x+3\)
\(\Rightarrow\left\{{}\begin{matrix}4a+b=1\\a=-2;b\ne3\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}4.\left(-2\right)+b=1\\a=-2;b\ne3\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}b=9\left(t/m\right)\\a=-2\end{matrix}\right.\)
Vậy \(d_3:y=-2x+9\)
#Rinz
b. PTHĐGĐ của hai hàm số:
\(x+2=-2x+1\)
\(\Rightarrow x=-\dfrac{1}{3}\)
Thay x vào hs đầu tiên: \(y=-\dfrac{1}{3}+2=\dfrac{5}{3}\)
Tọa độ điểm \(A\left(-\dfrac{1}{3};\dfrac{5}{3}\right)\)
b: Tọa độ giao điểm là:
\(\left\{{}\begin{matrix}x+2=-2x+1\\y=x+2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{1}{3}\\y=\dfrac{5}{3}\end{matrix}\right.\)
Đồ thị y = -x cắt đồ thị y = x + 1 tại điểm M( x o , y o ). Vì M thuộc cả hai đồ thị nên tọa độ của M phải thỏa mãn các hàm số, nghĩa là:
Đồ thị y = |x| và đồ thị y = |x + 1| chỉ cắt nhau tại một điểm duy nhất M((-1)/2; 1/2).
Suy ra phương trình |x| = |x + 1| chỉ có nghiệm duy nhất x = (-1)/2.