\(x^4-6x^3+14x^2-13x+5\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 12 2016

Bạn tham khảo bài này, có dạng tương tự.

http://olm.vn/hoi-dap/question/776690.html

21 tháng 12 2016

Ta có

\(x^4+x^3+x^2+x+1=y^2\)

\(\Leftrightarrow4y^2=4x^4+4x^3+4x^2+4x+4\)cũng là số chính phương

Ta thấy rằng

\(4x^4+4x^3+4x^2+4x+4>4x^4+4x^3+x^2=\left(2x^2+x\right)^2\)

Và 

\(4x^4+4x^3+4x^2+4x+4< 4x^4+4x^3+9x^2+4x+4=\left(2x^2+x+2\right)^2\)

\(\Rightarrow\left(2x^2+x\right)^2< \left(2y\right)^2< \left(2x^2+x+2\right)^2\)

\(\Rightarrow4y^2=\left(2x^2+x+1\right)^2\)

\(\Leftrightarrow4x^4+4x^3+4x^2+4x+4=4x^4+4x^3+5x^2+2x+1\)

\(\Leftrightarrow x^2-2x-3=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=-1\\x=3\end{cases}}\)

17 tháng 4 2020

Vì \(4x^3+14x^2+9x-6\) là số chính phương nên ta có \(4x^3+14x^2+9x-6=k^2\) với \(k\inℕ\)
Ta có \(4x^3+14x^2+9x-6=\left(x+2\right)\left(4x^2+6x-3\right)\)nên ta có \(\left(x+2\right)\left(4x^2+6x-3\right)=k^2\)

Đặt \(\left(x+2;4x^2+6x-3\right)=d\)với \(d\inℕ^∗\)
Ta có \(x+2⋮d\Rightarrow\left(x+2\right)\left(4x-2\right)⋮d\Rightarrow4x^2+6x-4⋮d\)
Ta lại có \(4x^2+6x-3⋮d\Rightarrow\left(4x^2+6x-3\right)-\left(4x^2+6x-4\right)=1⋮d\)

\(\Rightarrow d=1\)(Vì \(d\inℕ^∗\))
Vậy \(\left(x+2;4x^2+6x-3\right)=1\)
mà \(\left(x+2\right)\left(4x^2+6x-3\right)=k^2\)nên ta có:

x + 2 và 4x2 + 6x - 3 là số chính phương\(\Rightarrow\hept{\begin{cases}x+2=a^2\\4x^2+6x-3=b^2\end{cases}}\left(a,b\right)\inℕ^∗\)

Vì x > 0 nên ta có \(4x^2< b^2< 4x^2+12x+9\Leftrightarrow\left(2x\right)^2< b^2< \left(2x+3\right)^2\)
Vì b lẻ nên \(b^2=\left(2x+1\right)^2\Leftrightarrow4x^2+6x-3=4x^2+4x+1\)

\(\Leftrightarrow2x=4\Leftrightarrow x=2\)
Vậy x = 2 thì \(4x^3+14x^2+9x-6\)là số chính phương

11 tháng 9 2019

Đây nha bn

 http://olm.vn/hoi-dap/detail/97831197795.html

8 tháng 5 2017

(Lời giải có thể hơi khó hiểu một chút)

Đề bài yêu cầu ta giải pt nghiệm nguyên \(2^x+5^y=n^2\)

Ta xét modulo 5. Rõ ràng \(n^2=0,1,4\left(mod5\right)\) nên \(2^x=0,1,4\left(mod5\right)\)

\(2^1=2\left(mod5\right)\)\(2^2=4\left(mod5\right)\)\(2^3=3\left(mod5\right)\)\(2^4=1\left(mod5\right)\) và sau đó quay vòng lại.

Từ đó ta thấy số dư của \(2^n\) khi chia cho 5 lặp lại theo chu kì 4 đơn vị.

Đồng thời, để \(2^x=0,1,4\left(mod5\right)\) thì \(x=0,2\left(mod4\right)\) hay \(x\) chẵn.

Đặt \(x=2k\). Pt thành \(4^k+5^y=n^2\)

-----

Ta chuyển sang xét modulo 3.

Do \(4^k=1\left(mod3\right)\) và \(n^2=0,1\left(mod3\right)\) và \(5^y=\left(-1\right)^y\left(mod3\right)\) nên \(y\) lẻ.

(Chỗ này mình ghi tắt. Bạn thử suy luận xem tại sao \(y\) chẵn không được nhé).

------

Trong pt cần giải ta biến đổi thành: \(5^y=n^2-4^k=\left(n-2^k\right)\left(n+2^k\right)\).

Vế trái chỉ gồm tích các số 5, do đó ta có: \(\hept{\begin{cases}n-2^k=5^b\\n+2^k=5^a\end{cases}}\) và \(b< a,a+b=y\).

Lấy hai vế trừ nhau ta có: \(2^{k+1}=5^a-5^b=5^b\left(5^{a-b}-1\right)\).

Vế trái không chia hết cho 5, nếu \(b\ge1\) thì vế phải sẽ chia hết cho 5 nên không được.

Vậy \(b=0,a=y\) và ta có \(2^{k+1}=5^y-1\).

-----

Ta viết \(5^y-1=\left(5-1\right)\left(5^{y-1}+5^{y-2}+...+5+1\right)\).

Để ý thấy, từ \(5^{y-1}\) tới \(5^0\) có \(y\) số lẻ, tức là tổng của chúng lẻ.

Chứng tỏ tổng này không là lũy thừa của 2, trừ trường hợp tổng đó là 1.

Tức là \(y=1\). Từ việc \(5^y-1=2^{k+1}\) suy ra \(k=1,x=2\).

Vậy \(\left(x;y\right)=\left(2;1\right)\) là nghiệm duy nhất của pt.