\(4^x+5^y\)là số chính phương

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 3 2022

Đặt a2=2x+5ya2=2x+5y

-Nếu x=01+5y=a25y=(a1)(a+1){a+1=5ma1=5n(m,nN,m+n=y,m>n)2=5m5n=5n(5mn1)⇒1+5y=a2⇒5y=(a−1)(a+1)⇒{a+1=5ma−1=5n(m,n∈N,m+n=y,m>n)⇒2=5m−5n=5n(5m−n−1)

Nếu n=05m1=25m=3→5m−1=2⇒5m=3 (vô lý)

Nếu n0≠0 thì vế phải chia hết cho 5, vế trái không chia hết cho 5 loại

Tương tự, thử lần lượt x=1;2;3 để tìm nghiệm.

-Nếu x>3

  +) Với y lẻ: Đặt y=2k+1 (kN). Ta có: a2=2x+52k+10+25k.51k.5=5a2=2x+52k+1≡0+25k.5≡1k.5=5(mod 8)a2a2 không là số chính phương loại.

  +) Với y chẵn: Đặt y=2k (kN)2x+52k=a22x=(a5k)(a+5k){a+5k=2ba5k=2c(b,cN,b+c=x,b>c)2.5k=2b2c=2c(2bc1)2b=2b=12c11=5k2c1=5k+11k+1=2⇒2x+52k=a2⇒2x=(a−5k)(a+5k)⇒{a+5k=2ba−5k=2c(b,c∈N,b+c=x,b>c)⇒2.5k=2b−2c=2c(2b−c−1)⇒2b=2⇒b=1⇒2c−1−1=5k⇒2c−1=5k+1≡1k+1=2(mod 4)2c1=2c=2x=2+1=3⇒2c−1=2⇒c=2⇒x=2+1=3(loại, vì x>3)

2,Giải: 

♣ Ta thấy p = 2 thì 2p + 1 = 5 không thỏa = n³ 

♣ Nếu p > 2 => p lẻ (Do Số nguyên tố chẵn duy nhất là 2 ) 
Mặt khác : 2p + 1 là 1 số lẻ => n³ là một số lẻ => n là một số lẻ 

=> 2p + 1 = (2k + 1)³ ( với n = 2k + 1 ) 
<=> 2p + 1 = 8k³ + 12k² + 6k + 1 
<=> p = k(4k² + 6k + 3) 

=> p chia hết cho k 
=> k là ước số của số nguyên tố p. 

Do p là số nguyên tố nên k = 1 hoặc k = p 

♫ Khi k = 1 
=> p = (4.1² + 6.1 + 3) = 13 (nhận) 

♫ Khi k = p 
=> (4k² + 6k + 3) = (4p² + 6p + 3) = 1 
Do p > 2 => (4p² + 6p + 3) > 2 > 1 
=> không có giá trị p nào thỏa. 

Đáp số : p = 13

8 tháng 5 2017

(Lời giải có thể hơi khó hiểu một chút)

Đề bài yêu cầu ta giải pt nghiệm nguyên \(2^x+5^y=n^2\)

Ta xét modulo 5. Rõ ràng \(n^2=0,1,4\left(mod5\right)\) nên \(2^x=0,1,4\left(mod5\right)\)

\(2^1=2\left(mod5\right)\)\(2^2=4\left(mod5\right)\)\(2^3=3\left(mod5\right)\)\(2^4=1\left(mod5\right)\) và sau đó quay vòng lại.

Từ đó ta thấy số dư của \(2^n\) khi chia cho 5 lặp lại theo chu kì 4 đơn vị.

Đồng thời, để \(2^x=0,1,4\left(mod5\right)\) thì \(x=0,2\left(mod4\right)\) hay \(x\) chẵn.

Đặt \(x=2k\). Pt thành \(4^k+5^y=n^2\)

-----

Ta chuyển sang xét modulo 3.

Do \(4^k=1\left(mod3\right)\) và \(n^2=0,1\left(mod3\right)\) và \(5^y=\left(-1\right)^y\left(mod3\right)\) nên \(y\) lẻ.

(Chỗ này mình ghi tắt. Bạn thử suy luận xem tại sao \(y\) chẵn không được nhé).

------

Trong pt cần giải ta biến đổi thành: \(5^y=n^2-4^k=\left(n-2^k\right)\left(n+2^k\right)\).

Vế trái chỉ gồm tích các số 5, do đó ta có: \(\hept{\begin{cases}n-2^k=5^b\\n+2^k=5^a\end{cases}}\) và \(b< a,a+b=y\).

Lấy hai vế trừ nhau ta có: \(2^{k+1}=5^a-5^b=5^b\left(5^{a-b}-1\right)\).

Vế trái không chia hết cho 5, nếu \(b\ge1\) thì vế phải sẽ chia hết cho 5 nên không được.

Vậy \(b=0,a=y\) và ta có \(2^{k+1}=5^y-1\).

-----

Ta viết \(5^y-1=\left(5-1\right)\left(5^{y-1}+5^{y-2}+...+5+1\right)\).

Để ý thấy, từ \(5^{y-1}\) tới \(5^0\) có \(y\) số lẻ, tức là tổng của chúng lẻ.

Chứng tỏ tổng này không là lũy thừa của 2, trừ trường hợp tổng đó là 1.

Tức là \(y=1\). Từ việc \(5^y-1=2^{k+1}\) suy ra \(k=1,x=2\).

Vậy \(\left(x;y\right)=\left(2;1\right)\) là nghiệm duy nhất của pt.

17 tháng 10 2019

hello

3 tháng 6 2019

Câu 1 bạn dùng chia hết cho 13

Câu 2 bạn cộng cả 2 vế với z^4 rồi dùng chia 8

Câu 3 bạn đặt a^4n là x thì x sẽ chia 5 dư 1 và chia hết cho 4 hoăc chia 4 dư 1

Khi đó ta có x^2+3x-4=(x-1)(x+4)

đến đây thì dễ rồi

Câu 4 bạn xét p=3 p chia 3 dư 1 p chia 3 dư 2 là ra

Câu 6 bạn phân tích biểu thức của đề thành nhân tử có nhân tử x-2

Câu 5 mình nghĩ là kẹp giữa nhưng chưa ra

3 tháng 6 2019

Cảm ơn bạn Ninh Đức Huy.