\(\left(a+3b+1\right).\left(2^a+a+b...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 3 2018

=> Theo bđt cô si ta có : B≥33√(x2+1y2 )(y2+1z2 )(z2+1x2 )

=> B≥33√2·xy ·2·yz ·2·zx =33√8=6 

( Chỗ này là thay x2+1y2 ≥2√x2y2 =2·xy  và 2 cái kia tương tự vào )

=> Min B=6

Mình nhầm chỗ câu b, sửa lại là :

B≥33√√(x2+1y2 )(y2+1z2 )(z2+1x2 )

Bạn làm tương tự => B≥3√2.

26 tháng 11 2019

Bài 1 : 

Gọi f( x )  = 2n2 + n - 7

       g( x ) = n - 2

Cho g( x )  = 0

\(\Leftrightarrow\)n - 2 = 0

\(\Rightarrow\)n      = 2

\(\Leftrightarrow\)f( 2 ) = 2 . 22 + 2 - 7

\(\Rightarrow\)f( 2 )  = 3

Để f( x ) \(⋮\)g( x )

\(\Rightarrow\)n - 2 \(\in\)Ư( 3 )  = { \(\pm\)1 ; \(\pm\)3 }

Ta lập bảng :

n - 21- 13- 3
n315- 1

Vậy : n \(\in\){ - 1 ; 1 ; 3 ; 5 }

26 tháng 11 2019

2n^2+n-7 n-2 2n+6 2n^2-4n 6n-7 6n-12 5

Để \(2n^2+n-7⋮n-2\) thì \(5⋮n-2\)

Làm nốt

10 tháng 12 2018

\(x^2-x+1=x^2-2.x.\frac{1}{2}+\left(\frac{1}{2}\right)^2+\frac{3}{4}=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0\forall x\)

\(-x^2+4x-5=-\left(x^2-2.x.2+2^2\right)-1=-\left(x-2\right)^2-1< 0\forall x\)

\(a\left(2a-3\right)-2a\left(a+1\right)=a\left(2a-3-2a-2\right)=-5a⋮5\forall a\inℤ\)

11 tháng 6 2017

a)  Điều kiện :  \(a\ne-b;b\ne1;a\ne-1\)

\(P=\frac{a^2\left(1+a\right)-b^2\left(1-b\right)-a^2b^2\left(a+b\right)}{\left(a+b\right)\left(1-b\right)\left(1+a\right)}\)

\(P=\frac{a^3+a^2+b^3-b^2-a^2b^2\left(a+b\right)}{\left(a+b\right)\left(1-b\right)\left(1+a\right)}\)

\(P=\frac{\left(a+b\right)\left(a^2-ab+b^2\right)+\left(a+b\right)\left(a-b\right)-a^2b^2\left(a+b\right)}{\left(a+b\right)\left(1-b\right)\left(1+a\right)}\)

\(P=\frac{\left(a+b\right)\left(a^2-ab+b^2+a-b-a^2b^2\right)}{\left(a+b\right)\left(1-b\right)\left(1+a\right)}\)

\(P=\frac{a^2+b^2-a^2b^2+a-b-ab}{\left(1-b\right)\left(1+a\right)}\)

\(P=\frac{a^2\left(1-b^2\right)-\left(1-b^2\right)+a\left(1-b\right)+\left(1-b\right)}{\left(1-b\right)\left(1+a\right)}\)

\(P=\frac{\left(1-b\right)\left(a^2+a^2b-1-b+a+1\right)}{\left(1-b\right)\left(1+a\right)}\)

\(P=\frac{a^2+a^2b+a-b}{1+a}\)

\(P=\frac{a\left(a+1\right)+b\left(a-1\right)\left(a+1\right)}{1+a}\)

\(P=\frac{\left(a+1\right)\left(a+ab-b\right)}{1+a}\)

P = a + ab - b

b)

P = 3

<=>  a + ab - b = 3

<=>  a(b+1) - (b+1) +1 - 3 = 0

<=>   (b+1)(a-1)  = 2

Ta có bảng sau với a, b nguyên

b+112-1-2
a-121-2-1
b01-2-3
a32-10
so với đk loạiloại 


Vậy (a;b) \(\in\){ (3; 0) ; (0; -3)}

5 tháng 2 2018

Theo đề bài thì ta có:

\(\frac{ab}{|a-b|}=p\) (với p là số nguyên tố)

Xét \(a>b\)

\(\Rightarrow\frac{ab}{a-b}=p\)

\(\Leftrightarrow ab-pa+pb-p^2=-p^2\)

\(\Leftrightarrow\left(p+a\right)\left(p-b\right)=p^2\)

\(\Rightarrow\hept{\begin{cases}p+a=p\\p-b=p\end{cases}}\)\(\hept{\begin{cases}a+p=p^2\\p-b=1\end{cases}}\)

(Vì a, b, p là các số nguyên dương)

Tương tự cho trường hợp \(a< b\)

Làm nốt nhé

7 tháng 2 2018

cau tra loi dung roi

26 tháng 9 2019

phân tích đa thức thành nhân tử

26 tháng 9 2019

 Lan nghĩ ra một số biết rằng số đó bằng hiệu của số chẵn lớn nhất có 3 chữ số chẵn khác nhau với 60 rồi cộng thêm 21. Hỏi số lan nghĩ là số nào