K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 2 2018

Theo đề bài thì ta có:

\(\frac{ab}{|a-b|}=p\) (với p là số nguyên tố)

Xét \(a>b\)

\(\Rightarrow\frac{ab}{a-b}=p\)

\(\Leftrightarrow ab-pa+pb-p^2=-p^2\)

\(\Leftrightarrow\left(p+a\right)\left(p-b\right)=p^2\)

\(\Rightarrow\hept{\begin{cases}p+a=p\\p-b=p\end{cases}}\)\(\hept{\begin{cases}a+p=p^2\\p-b=1\end{cases}}\)

(Vì a, b, p là các số nguyên dương)

Tương tự cho trường hợp \(a< b\)

Làm nốt nhé

7 tháng 2 2018

cau tra loi dung roi

9 tháng 4 2021

Đặt ab|a−b|ab|a−b| =c

⇒ab=c|a-b|

c là số nguyên tố⇒⎡⎣a⋮cb⋮c[a⋮cb⋮c 

c là số nguyên tố⇒c∈{2,3,5,7}

 TH1:c=2

⇒ab=2|a-b|

+)a>b⇒b=b=2aa+22aa+2=2-4a+24a+2 ∈N

⇒a=2

⇒b=1

+)a<b⇒a=a=2bb+22bb+2=2-4b+24b+2 ∈N

⇒b=2

⇒a=1

CMT²⇒......

CẬU CHÉP Ở ĐAU THẾ VGH

9 tháng 5 2017

Câu 2/

\(\frac{a^2+bc}{a^2\left(b+c\right)}+\frac{b^2+ca}{b^2\left(c+a\right)}+\frac{c^2+ab}{c^2\left(a+b\right)}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)

\(\Leftrightarrow\frac{a^2+bc}{a^2\left(b+c\right)}-\frac{1}{a}+\frac{b^2+ca}{b^2\left(c+a\right)}-\frac{1}{b}+\frac{c^2+ab}{c^2\left(a+b\right)}-\frac{1}{c}\ge0\)

\(\Leftrightarrow\frac{\left(b-a\right)\left(c-a\right)}{a^2\left(b+c\right)}+\frac{\left(a-b\right)\left(c-b\right)}{b^2\left(c+a\right)}+\frac{\left(a-c\right)\left(b-c\right)}{c^2\left(a+b\right)}\ge0\)

\(\Leftrightarrow a^4b^4+b^4c^4+c^4a^4-a^4b^2c^2-a^2b^4c^2-a^2b^2c^4\ge0\)

\(\Leftrightarrow a^4b^4+b^4c^4+c^4a^4\ge a^4b^2c^2+a^2b^4c^2+a^2b^2c^4\left(1\right)\)

Ma ta có: \(\hept{\begin{cases}a^4b^4+b^4c^4\ge2a^2b^4c^2\left(2\right)\\b^4c^4+c^4a^4\ge2a^2b^2c^4\left(3\right)\\c^4a^4+a^4b^4\ge2a^4b^2c^2\left(4\right)\end{cases}}\)

Cộng (2), (3), (4) vế theo vế rồi rút gọn cho 2 ta được điều phải chứng minh là đúng.

PS: Nếu nghĩ được cách khác đơn giản hơn sẽ chép lên cho b sau. Tạm cách này đã.

9 tháng 5 2017

tks bn nhé, bn giúp mk câu 1 được ko

22 tháng 2 2017

Gợi ý: Giả sử \(c\le d\)

Ta có: \(0< a+b\le18\)

\(\Leftrightarrow0< cd\le18\)

\(\Rightarrow c^2\le cd\le18\)

\(\Rightarrow0< c\le4\)

Thế c = 1 vào ta được

\(\hept{\begin{cases}a+b=d\\1+d=ab\end{cases}}\)

\(\Rightarrow1+a+b=ab\)

\(\Leftrightarrow\left(a-1\right)\left(b-1\right)=2\)

\(\Rightarrow\left(a-1,b-1\right)=\left(1,2;2,1\right)\)

\(\Rightarrow\left(a,b\right)=\left(2,3;3,2\right)\)

\(\Rightarrow\hept{\begin{cases}d=4\\d=2\end{cases}\left(l\right)}\)

Tương tự các trường hợp còn lại