K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7p + q và pq + 11 đều là số nguyên tố
pq + 11 là số nguyên tố --> pq phải là số chẵn --> hoặc p = 2 hoặc q = 2

** Nếu p = 2 --> 7p + q = 14 + q
ta thấy 14 chia 3 dư 2 ;
+) nếu q chia hết cho 3,q là số nguyên tố --> q = 3
--> 7p + q = 17 --> là số nguyên tố
--> pq + 11 = 17 --> là số nguyên tố --> thỏa

+) nếu q chia 3 dư 1 --> 14 + q chia hết cho 3 --> là hợp số --> loại

+) nếu q chia 3 dư 2 --> 2q chia 3 dư 1 --> pq + 11 = 2q + 11 chia hết cho 3 --> là hợp số --> loại

** Nếu q = 2 --> 7p + q = 2 + 7p
2 chia 3 dư 2 ;

+) nếu 7p chia hết cho 3 --> p chia hết cho 3 --> p = 3
--> 7p + q = 23
--> pq + 11 = 17 --> đều là ố nguyên tố --> thỏa

+) nếu 7p chia 3 dư 1 --> 2 + 7p chia hết cho 3 --> là hợp số --> loại

+) nếu 7p chia 3 dư 2 --> p chia 3 dư 2 --> 2p chia 3 dư 1
--> pq + 11 = 2p + 11 chia hết cho 3 --> là hợp số --> loại

Tóm lại có 2 giá trị của p ; q thỏa mãn là : p = 2 ; q = 3 hoặc p = 3 ; q = 2

31 tháng 3 2019

a)

a b ¯ + b a ¯ = 10 a + b + 10 b + a = 11 a + 11 b = 11 ( a + b ) ⋮ 11

b) n = 0 ta có: 3n + 6 = 30 + 6 = 7 là số nguyên tố

n ≠ 0 ta có 3n ⋮ 3 ; 6 ⋮ 3 nên 3n + 6 ⋮ 3 ; 3n + 6 > 3

Số 3n + 6 là hợp số vì ngoài ước 1 và chính nó còn có ước là 3.

Vậy với n = 0 thì 3n + 6 là số nguyên tố.

7 tháng 7 2015

p=1;q=0

p=0;q=2

p=2;q=3

...

 

25 tháng 2 2016

bạn "tôi học giỏi toán" sai rồi 0 và 1 đâu phải là số nguyên tố

7p + q và pq + 11 đều là số nguyên tố
pq + 11 là số nguyên tố --> pq phải là số chẵn --> hoặc p = 2 hoặc q = 2

** Nếu p = 2 --> 7p + q = 14 + q
ta thấy 14 chia 3 dư 2 ;
+) nếu q chia hết cho 3,q là số nguyên tố --> q = 3
--> 7p + q = 17 --> là số nguyên tố
--> pq + 11 = 17 --> là số nguyên tố --> thỏa

+) nếu q chia 3 dư 1 --> 14 + q chia hết cho 3 --> là hợp số --> loại

+) nếu q chia 3 dư 2 --> 2q chia 3 dư 1 --> pq + 11 = 2q + 11 chia hết cho 3 --> là hợp số --> loại

** Nếu q = 2 --> 7p + q = 2 + 7p
2 chia 3 dư 2 ;

+) nếu 7p chia hết cho 3 --> p chia hết cho 3 --> p = 3
--> 7p + q = 23
--> pq + 11 = 17 --> đều là ố nguyên tố --> thỏa

+) nếu 7p chia 3 dư 1 --> 2 + 7p chia hết cho 3 --> là hợp số --> loại

+) nếu 7p chia 3 dư 2 --> p chia 3 dư 2 --> 2p chia 3 dư 1
--> pq + 11 = 2p + 11 chia hết cho 3 --> là hợp số --> loại

Vậy p = 2 ; q = 3 hoặc p = 3 ; q = 2

11 tháng 9

7p + q và pq + 11 đều là số nguyên tố

pq + 11 là số nguyên tố --> pq phải là số chẵn --> hoặc p = 2 hoặc q = 2

 

** Nếu p = 2 --> 7p + q = 14 + q

ta thấy 14 chia 3 dư 2 ;

+) nếu q chia hết cho 3,q là số nguyên tố --> q = 3

--> 7p + q = 17 --> là số nguyên tố

--> pq + 11 = 17 --> là số nguyên tố --> thỏa

 

+) nếu q chia 3 dư 1 --> 14 + q chia hết cho 3 --> là hợp số --> loại

 

+) nếu q chia 3 dư 2 --> 2q chia 3 dư 1 --> pq + 11 = 2q + 11 chia hết cho 3 --> là hợp số --> loại

 

** Nếu q = 2 --> 7p + q = 2 + 7p

2 chia 3 dư 2 ;

 

+) nếu 7p chia hết cho 3 --> p chia hết cho 3 --> p = 3

--> 7p + q = 23

--> pq + 11 = 17 --> đều là ố nguyên tố --> thỏa

 

+) nếu 7p chia 3 dư 1 --> 2 + 7p chia hết cho 3 --> là hợp số --> loại

Ko chắc lắm

+) nếu 7p chia 3 dư 2 --> p chia 3 dư 2 --> 2p chia 3 dư 1

--> pq + 11 = 2p + 11 chia hết cho 3 --> là hợp số --> loại

 

Vậy p = 2 ; q = 3 hoặc p = 3 ; q = 2

AH
Akai Haruma
Giáo viên
12 tháng 10

Lời giải:

$ab+11$ là số nguyên tố, mà $ab+11>2$ nên $ab+11$ là số nguyên tố lẻ.

$\Rightarrow ab$ chẵn.

$\Rightarrow$ trong 2 số sẽ có ít nhất 1 số chẵn.

TH1: $a$ chẵn. Do $a$ nguyên tố nên $a=2$

Khi đó cần tìm $b$ sao cho $b, 14+b$ và $2b+11$ nguyên tố

Nếu $b\vdots 3$ thì $b=3$ (do $b$ nguyên tố). Khi đó $14+b=17, 2b+11=17$ là snt (hoàn toàn thỏa mãn)

Nếu $b$  chia 3 dư 1 thì $14+b\vdots 3$. Mà $14+b>3$ nên không là snt (loại) 

Nếu $b$ chia 3 dư 2 thì $2b+11\vdots 3$. Mà $2b+11>3$ nên không là snt (loại) 

TH2: $b$ chẵn. Do $b$ nguyên tố nên $b=2$

Khi đó cần tìm a sao cho $a, 7a+2, 2a+11$ là snt. 

Nếu $a\vdots 3$ thì $a=3$. Khi đó: $7a+2=23, 2a+11=17$ là snt (tm) 

Nếu $a$ chia 3 dư 1 thì $7a+2\vdots 3$. Mà $7a+2>3$ nên không là snt (loại) 

Nếu $a$ chia $3$ dư 2 thì $2a+11\vdots 3$. Mà $2a+11>3$ nên không là snt (loại) 

Vậy phân số cần tìm là $\frac{2}{3}$ hoặc $\frac{3}{2}$

18 tháng 4 2020

p = 2. Vì 2 + 11 = 13 mà 13 là số nguyên tố. Và ngoài số 2 ra, không có số nguyên tố nào là số chẵn mà số 11 khi công với các số lẻ sẽ thành số chẵn.

p = 3; 5; 7; 11; ...( tất cả các số nguyên tố khác 2 )

Xong rùi đó. Chúc bạn học tốt! Nhớ k cho mình nha!

29 tháng 11 2018

xet p,q tung so = 2 hoac > 2 va co dang 2k+1