Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) để x nguyên
=>13 chia hết n+2
=>n+2= 1 hoặc -1 hoặc -13 hoặc 13
=>n= -1 hoặc -3 hoặc -15 hoặc 11
Tìm tất cả số n nguyên dương để : N=\(\left(n^2+n-2\right)\left(n^2+5n+4\right)\) là số chính phương
Để A nguyên thì \(n-1\in\left\{1;-1;7;-7\right\}\)
hay \(n\in\left\{2;0;8;-6\right\}\)
để A là số nguyên thì
n+6 chia hết cho n-1
=>(n-1)+7chia hết n-1
=>7chia hết n-1
n-1 thuộc Ư(7)
cậu lập bảng sau đó kết luận hộ tớ nhé
tớ ko lập bảng được
a) Gọi d = ƯCLN(3n + 4; 5n + 7) (d thuộc N*)
=> 3n + 4 chia hết cho d; 5n + 7 chia hết cho d
=> 5.(3n + 4) chia hết cho d; 3.(5n + 7) chia hết cho d
=>15n + 20 chia hết cho d; 15n + 21 chia hết cho d
=> (15n + 21) - (15n + 20) chia hết cho d
=> 1 chia hết cho d
Mà d thuộc N* => d = 1
=> UCLN(3n + 4; 5n + 7) = 1
Vậy với mọi n thì UCLN(3n + 4; 5n + 7) luôn = 1
b) Gọi d = UCLN(8n + 10; 7n + 10) (d thuộc N*)
=> 8n + 10 chia hết cho d; 7n + 10 chia hết cho d
=> 7.(8n + 10) chia hết cho d; 8.(7n + 10) chia hết cho d
=> 56n + 70 chia hết cho d; 56n + 80 chia hết cho d
=> (56n + 80) - (56n + 70) chia hết cho d
=> 10 chia hết cho d
Mà d thuộc => d thuộc {1 ; 2 ; 5}
+ Với d = 2 thì 8n + 10 chia hết cho 2 (luôn đúng); 7n + 10 chia hết cho 2
=> 7n chia hết cho 2. Mà (7;2)=1 => n chia hết cho 2 => n = 2k (k thuộc N)
+ Với n = 5 thì 8n + 10 chia hết cho 5; 7n + 10 chia hết cho 5
Do 10 chia hết cho d => 8n chia hết cho 5; 7n chia hết cho 5
Mà (8;5)=1; (7;5)=1 => n chia hết cho 5 => n = 5k (k thuộc N)
Vậy với \(n\ne2k\)và \(n\ne5k\)(k thuộc N) thì 8n + 10 và 7n = 10 có UCLN = 1
a) Gọi d = ƯCLN(3n + 4; 5n + 7) (d thuộc N*)
=> 3n + 4 chia hết cho d; 5n + 7 chia hết cho d
=> 5.(3n + 4) chia hết cho d; 3.(5n + 7) chia hết cho d
=>15n + 20 chia hết cho d; 15n + 21 chia hết cho d
=> (15n + 21) - (15n + 20) chia hết cho d
=> 1 chia hết cho d
Mà d thuộc N* => d = 1
=> UCLN(3n + 4; 5n + 7) = 1
Vậy với mọi n thì UCLN(3n + 4; 5n + 7) luôn = 1
b) Gọi d = UCLN(8n + 10; 7n + 10) (d thuộc N*)
=> 8n + 10 chia hết cho d; 7n + 10 chia hết cho d
=> 7.(8n + 10) chia hết cho d; 8.(7n + 10) chia hết cho d
=> 56n + 70 chia hết cho d; 56n + 80 chia hết cho d
=> (56n + 80) - (56n + 70) chia hết cho d
=> 10 chia hết cho d
Mà d thuộc => d thuộc {1 ; 2 ; 5}
+ Với d = 2 thì 8n + 10 chia hết cho 2 (luôn đúng); 7n + 10 chia hết cho 2
=> 7n chia hết cho 2. Mà (7;2)=1 => n chia hết cho 2 => n = 2k (k thuộc N)
+ Với n = 5 thì 8n + 10 chia hết cho 5; 7n + 10 chia hết cho 5
Do 10 chia hết cho d => 8n chia hết cho 5; 7n chia hết cho 5
Mà (8;5)=1; (7;5)=1 => n chia hết cho 5 => n = 5k (k thuộc N)
Vậy với $n\ne2k$n≠2kvà $n\ne5k$n≠5k(k thuộc N) thì 8n + 10 và 7n = 10 có UCLN = 1
\(A=\frac{n+6}{n-1}=\frac{n-1+7}{n-1}=1+\frac{7}{n-1}\inℤ\Leftrightarrow\frac{7}{n-1}\inℤ\)
mà \(n\)là số nguyên nên \(n-1\inƯ\left(7\right)=\left\{-7,-1,1,7\right\}\)
\(\Leftrightarrow n\in\left\{-6,0,2,8\right\}\).
Gọi 10 số tự nhiên liên tiếp là:
n;n+1;n+2;n+3;n+4;n+5;n+6;n+7;n+8;n+9
Với n>1
=> n=2 => có 5 số nguyên tố: 2;3;5;7;11
Với n> 2 thì dãy số gồm 5 số chẵn và 5 số lẻ. Các số chẵn đều là hợp số
*Nếu n là số chẵn
=> 5 số lẻ có dạng: n+1;n+3;n+5;n+7;n+9
+ Nếu n chia hết cho 3
=> n+9 chia hết cho 3; n+3 chia hết cho 3
Nên có nhiều nhất 3 số nguyên tố
+Nếu n:3 dư 1
=> n+5 chia hết cho 3
Nên có nhiều nhất 4 số nguyên tố
+Nếu n:3 dư 2
=> n+1 chia hết cho 3; n+7 chia hết cho 3
Nên có nhiều nhất 3 số nguyên tố
*Nếu n là số lẻ
=> 5 số lẻ có dạng:
n; n+2; n+4; n+6; n+8
+Nếu n chia hết cho 3
=> n+6 chia hết cho 3
Nên có nhiều nhất 4 số nguyên tố
+Nếu n:3 dư 1
=> n+8 chia hết cho 3; n+2 chia hết cho 3
Nên có nhiều nhất 3 số nguyên tố
+ Nếu n:3 dư 2
=> n+4 chia hết cho 3
Nên có nhiều nhất 4 số nguyên tố
Vậy trong dãy 10 số tự nhiên liên tiếp có nhiều nhất là 5 số nguyên tố
a) A nguyên khi (12n + 17) ⋮ (3n + 1)
Ta có:
12n + 17 = 12n + 4 + 13
= 4(3n + 1) + 13
Để (12n + 17) ⋮ (3n + 1) thì 13 ⋮ (3n + 1)
⇒ 3n + 1 ∈ Ư(13) = {-13; -1; 1; 13}
⇒ 3n ∈ {-14; -2, 0; 12}
⇒ n ∈ {-14/3; -2/3; 0; 4}
Mà n là số nguyên
⇒ n ∈ {0; 4}
b) Để A là số nguyên thì ⋮ (10n + 9) (5n - 1)
Ta có:
10n + 9 = 10n - 2 + 11
= 2(5n - 1) + 11
Để (10n + 9) ⋮ (5n - 1) thì 11 ⋮ (5n - 1)
⇒ 5n - 1 ∈ Ư(11) = {-11; -1; 1; 11}
⇒ 5n ∈ {-10; 0; 2; 12}
⇒ n ∈ {-2; 0; 2/5; 12/5}
Mà n là số nguyên
⇒ n ∈ {-2; 0}
\(\frac{10n+7}{5n-1}=\frac{2\left(5n-1\right)+9}{5n-1}=2+\frac{9}{5n-1}\)
Vậy \(5n-1\inƯ_{\left(9\right)}=\left\{\pm1;\pm3;\pm9\right\}\)
Bạn tự thay vào tìm n nhé^^
học tốt
Ta có: \(A=\frac{10n+7}{5n-1}=\frac{\left(10n-2\right)+9}{5n-1}=\frac{2\cdot\left(5n-1\right)+9}{5n-1}=2+\frac{9}{5n-1}\)
Để A nguyên => \(\frac{9}{5n-1}\inℤ\Rightarrow\left(5n-1\right)\inƯ\left(9\right)\)
\(\Leftrightarrow\left(5n-1\right)\in\left\{\pm1;\pm3;\pm9\right\}\)
\(\Leftrightarrow5n\in\left\{-8;-2;0;2;4;10\right\}\)
\(\Leftrightarrow n\in\left\{-\frac{8}{5};-\frac{2}{5};0;\frac{2}{5};\frac{4}{5};2\right\}\)
Mà n nguyên
=> \(n\in\left\{0;2\right\}\)