\(\frac{5\sqrt{x}-1}{2\sqrt{x}+3}\)nhận giá trị nguyên...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 4 2020

1) \(ĐKXĐ:\hept{\begin{cases}x\ge0\\x\ne4\end{cases}}\)

\(P=\frac{2+\sqrt{x}}{2-\sqrt{x}}-\frac{2-\sqrt{x}}{2+\sqrt{x}}-\frac{4x}{x-4}\)

\(\Leftrightarrow P=\frac{\left(2+\sqrt{x}\right)^2-\left(2-\sqrt{x}\right)^2+4x}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}\)

\(\Leftrightarrow P=\frac{4+4\sqrt{x}+x-4+4\sqrt{x}-x+4x}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}\)

\(\Leftrightarrow P=\frac{4x+8\sqrt{x}}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}\)

\(\Leftrightarrow P=\frac{4\sqrt{x}}{2-\sqrt{x}}\)

2) Để \(P=2\)

\(\Leftrightarrow\frac{4\sqrt{x}}{2-\sqrt{x}}=2\)

\(\Leftrightarrow4\sqrt{x}=4-2\sqrt{x}\)

\(\Leftrightarrow6\sqrt{x}=4\)

\(\Leftrightarrow\sqrt{x}=\frac{2}{3}\)

\(\Leftrightarrow x=\frac{4}{9}\)

Vậy để \(P=2\Leftrightarrow x=\frac{4}{9}\)

3) Khi \(\left(\sqrt{x}-2\right)\left(2\sqrt{x}-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x}-2=0\\2\sqrt{x}-1==0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x}=2\\\sqrt{x}=\frac{1}{2}\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=4\left(ktm\right)\\x=\frac{1}{4}\left(tm\right)\end{cases}}\)

Thay \(x=\frac{1}{4}\)vào P, ta được :

\(\Leftrightarrow P=\frac{4\sqrt{\frac{1}{4}}}{2-\sqrt{\frac{1}{4}}}=\frac{4\cdot\frac{1}{2}}{2-\frac{1}{2}}=\frac{2}{\frac{3}{2}}=\frac{4}{3}\)

4) Để \(P=\frac{\sqrt{x}+3}{2\sqrt{x}-1}\)

\(\Leftrightarrow\frac{4\sqrt{x}}{2-\sqrt{x}}=\frac{\sqrt{x}+3}{2\sqrt{x}-1}\)

\(\Leftrightarrow8x-4\sqrt{x}=-x-\sqrt{x}+6\)

\(\Leftrightarrow9x-3\sqrt{x}-6=0\)

\(\Leftrightarrow3x-\sqrt{x}-2=0\)

\(\Leftrightarrow\sqrt{x}=3x-2\)

\(\Leftrightarrow x=9x^2-12x+4\)

\(\Leftrightarrow9x^2-13x+4=0\)

\(\Leftrightarrow\left(9x-4\right)\left(x-1\right)=0\)

\(\Leftrightarrow\hept{\begin{cases}9x-4=0\\x-1=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{4}{9}\\x=1\end{cases}}\)

Thử lại ta được kết quá : \(x=\frac{4}{9}\left(ktm\right)\)\(x=1\left(tm\right)\)

Vậy để \(P=\frac{\sqrt{x}+3}{2\sqrt{x}-1}\Leftrightarrow x=1\)

5) Để biểu thức nhận giá trị nguyên

\(\Leftrightarrow\frac{4\sqrt{x}}{2-\sqrt{x}}\inℤ\)

\(\Leftrightarrow4\sqrt{x}⋮2-\sqrt{x}\)

\(\Leftrightarrow-4\left(2-\sqrt{x}\right)+8⋮2-\sqrt{x}\)

\(\Leftrightarrow8⋮2-\sqrt{x}\)

\(\Leftrightarrow2-\sqrt{x}\inƯ\left(8\right)=\left\{\pm1;\pm2;\pm4;\pm8\right\}\)

\(\Leftrightarrow\sqrt{x}\in\left\{1;3;0;4;-2;6;-6;10\right\}\)

Ta loại các giá trị < 0

\(\Leftrightarrow\sqrt{x}\in\left\{1;3;0;4;6;10\right\}\)

\(\Leftrightarrow x\in\left\{1;9;0;16;36;100\right\}\)

Vậy để \(P\inℤ\Leftrightarrow x\in\left\{1;9;0;16;36;100\right\}\)

\(\)

21 tháng 2 2019

\(P=\frac{4\sqrt{x}+3}{x+\sqrt{x}}+\frac{\sqrt{x}}{\sqrt{x}+1}\)

\(P=\frac{4\sqrt{x}+3}{\sqrt{x}\left(\sqrt{x}+1\right)}+\frac{\sqrt{x}}{\sqrt{x}+1}=\frac{4\sqrt{x}+3}{\sqrt{x}\left(\sqrt{x}+1\right)}+\frac{x}{\sqrt{x}\left(\sqrt{x}+1\right)}\)

\(=\frac{x+4\sqrt{x}+3}{\sqrt{x}\left(\sqrt{x}+1\right)}\inℤ\Leftrightarrow x+4\sqrt{x}+3⋮\sqrt{x}\)

Giải tiếp nhé sau đó thử chọn :V

21 tháng 2 2019

\(p=\frac{4\sqrt{x}+3}{x+\sqrt{x}}+\frac{\sqrt{x}}{\sqrt{x}+1}\)

\(=\frac{4\sqrt{x}+3}{\sqrt{x}\left(\sqrt{x}+1\right)}+\frac{x}{\sqrt{x}\left(\sqrt{x}+1\right)}\)

\(=\frac{x+\sqrt{x}+3\sqrt{x}+3}{\sqrt{x}\left(\sqrt{x}+1\right)}=\frac{\left(\sqrt{x}+3\right)\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}\)

\(=\frac{\sqrt{x}+3}{\sqrt{x}}=1+\frac{3}{\sqrt{x}}\)

Để \(x\in Z\Rightarrow P\in Z\)

\(\Rightarrow\sqrt{x}\inƯ\left(3\right)= \left\{-3;3\right\}\)

\(\Leftrightarrow x=9\left(t.mĐKXĐ\right)\)

19 tháng 11 2016

Ta có

\(1D=\frac{\sqrt{x}-2}{\sqrt{x}-3}=1+\frac{1}{\sqrt{x}-3}\)

Để cho D nguyên thì \(\sqrt{x}-3\)phải là ước của 1

\(\Rightarrow\sqrt{x}-3=\left(-1;1\right)\)

=> x = (4; 16)

=> D = (0; 2)

19 tháng 11 2016

1/ Để N nhận giá trị nguyên thì trước hết \(\sqrt{x}-2\)phải là ước của 3

\(\sqrt{x}-2=\left(-3;-1;1;3\right)\)

Thế vào ta tìm được x = (1; 9; 25)

=> N = (- 3; 3;1)

1 tháng 6 2021

mình đánh nhầm B=\(\frac{\sqrt{x}}{\sqrt{x}-3}\)

2 tháng 6 2021

Với \(x>0;x\ne9\)

Ta có : \(P=A.B\Rightarrow P=\frac{\sqrt{x}-1}{2\sqrt{x}}.\frac{\sqrt{x}}{\sqrt{x}-3}=\frac{\sqrt{x}-1}{2\sqrt{x}-6}\)

Để biểu thức trên nhận giá trị nguyên khi 

\(\sqrt{x}-1⋮2\sqrt{x}-6\Leftrightarrow2\sqrt{x}-2⋮2\sqrt{x}-6\)

\(\Leftrightarrow2\sqrt{x}-6+4⋮2\sqrt{x}-6\Leftrightarrow4⋮2\sqrt{x}-6\)

\(\Leftrightarrow2\sqrt{x}-6\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)

\(2\sqrt{x}-6\)1-12-24-4
\(2\sqrt{x}\)7584102
\(\sqrt{x}\)7/2 ( loại )5/2 ( loại )4251
xloạiloại2\(\sqrt{2}\)( loại )\(\sqrt{5}\)( loại )1

Vậy x = 1 ; 2 thì biểu thức trên nhận giá trị nguyên 

1 tháng 3 2020

a) Đkxđ: \(x\ne4\)

                    

Thay x=9 vào A ta được:

\(\frac{9+3}{\sqrt{9}-2}=\frac{12}{3-2}=12\)

b)Ta có \(B=\frac{\sqrt{x}-1}{\sqrt{x}+2}+\frac{5\sqrt{x}-2}{x-4}\)

                \(=\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}+\frac{5\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)

                \(=\frac{x-3\sqrt{x}+2+5\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)

                \(=\frac{x+2\sqrt{x}}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}=\frac{\sqrt{x}}{\sqrt{x}-2}\)

\(\Rightarrow B=\frac{\sqrt{x}}{\sqrt{x}-2}\)

c) TA có \(\frac{4B}{A}=\frac{4\sqrt{x}}{\sqrt{x}-2}:\frac{x+3}{\sqrt{x}-2}=\frac{\left(4\sqrt{x}\right).\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(x+3\right)}\)

                       \(=\frac{4\sqrt{x}}{x+3}\)

Để \(\frac{4B}{A}=\frac{4\sqrt{x}}{x+3}\in Z\)thì \(x+3\inƯ\left(4\right);x=a^2\left(a\in Z\right)\)

Với \(x+3\inƯ\left(4\right)\Rightarrow x\in\left\{-5;-4;-2;\pm1;7\right\}\)mà \(x=a^2\Rightarrow x=1\left(TM\right)\)

Vậy x=1

Hok tốt!

27 tháng 7 2016

\(P=\frac{\sqrt{x}+3}{\sqrt{x}-1}=\frac{\sqrt{x}-1+4}{\sqrt{x}-1}=1+\frac{4}{\sqrt{x}-1}\)

Để P đạt giá trị nguyên thì \(\frac{4}{\sqrt{x}-1}\) đạt giá trị nguyên

<=>4 chia hết cho \(\sqrt{x}-1\)

<=>\(\sqrt{x}-1\inƯ\left(4\right)\)

<=>\(\sqrt{x}-1\in\left\{-4;-2;-1;1;2;4\right\}\)

<=>\(\sqrt{x}\in\left\{-3;-1;0;2;3;5\right\}\)

<=>\(x\in\left\{0;4;9;25\right\}\)

Cách giải lớp 6 á, thông cảm :)

27 tháng 7 2016

rút gọn A= ( \(\left(\sqrt{26}+5\sqrt{2}\right)\sqrt{19-5\sqrt{13}}\)