\(sinx=m+1\) có nghiệm ?
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
17 tháng 10 2019

Do \(-1\le sinx\le1\) nên pt có nghiệm khi:

\(-1\le m+1\le1\)

\(\Rightarrow-2\le m\le0\)

NV
20 tháng 10 2019

\(\Leftrightarrow1-cos^2x+2cosx-2+m=0\)

\(\Leftrightarrow cos^2x-2cosx+1=m\)

\(\Leftrightarrow\left(cosx-1\right)^2=m\)

Do \(-1\le cosx\le1\Rightarrow0\le\left(cosx-1\right)^2\le4\)

\(\Rightarrow0\le m\le4\)

NV
17 tháng 10 2019

\(cosx-m=0\Leftrightarrow cosx=m\)

Do \(-1\le cosx\le1\)

\(\Rightarrow-1\le m\le1\)

NV
20 tháng 10 2019

Theo điều kiện có nghiệm của pt lượng giác bậc nhất:

\(m^2+1\ge\left(m+1\right)^2\)

\(\Leftrightarrow m^2+1\ge m^2+2m+1\)

\(\Leftrightarrow m\le0\)

23 tháng 12 2019

để phương trình có nghiệm thì :

12 + (-1)2 ≥ m2

⇔ m2 - 2 ≤ 0

⇔ -\(\sqrt{2}\) ≤ m ≤ \(\sqrt{2}\)

vậy \(-\sqrt{2}\)≤ m ≤ \(\sqrt{2}\) thì phương trình có nghiệm

24 tháng 12 2019

đáp án nào v bạn

NV
17 tháng 10 2019

Để pt đã cho vô nghiệm thì:

\(1^2+\left(m-1\right)^2< \left(\sqrt{5}\right)^2\)

\(\Leftrightarrow\left(m-1\right)^2< 4\)

\(\Rightarrow-2< m-1< 2\)

\(\Rightarrow-1< m< 3\)

17 tháng 10 2019

Chọn A
Ta có: a = 5 ; b= − m ; c= m + 1 .
Phương trình có nghiệm ⇔ a^2+b^2 ≥ c^2⇔ 5^2+ m^2≥ (m+1)2.
⇔ 25+ m^2≥ m^2+2m + 1⇔24 ≥ 2m ⇔ m≤ 12