\(msinx-cosx=m+1\) có nghiệm

A. \(m...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
20 tháng 10 2019

Theo điều kiện có nghiệm của pt lượng giác bậc nhất:

\(m^2+1\ge\left(m+1\right)^2\)

\(\Leftrightarrow m^2+1\ge m^2+2m+1\)

\(\Leftrightarrow m\le0\)

NV
17 tháng 10 2019

Do \(-1\le sinx\le1\) nên pt có nghiệm khi:

\(-1\le m+1\le1\)

\(\Rightarrow-2\le m\le0\)

NV
20 tháng 10 2019

\(\Leftrightarrow1-cos^2x+2cosx-2+m=0\)

\(\Leftrightarrow cos^2x-2cosx+1=m\)

\(\Leftrightarrow\left(cosx-1\right)^2=m\)

Do \(-1\le cosx\le1\Rightarrow0\le\left(cosx-1\right)^2\le4\)

\(\Rightarrow0\le m\le4\)

17 tháng 10 2019

Chọn A
Ta có: a = 5 ; b= − m ; c= m + 1 .
Phương trình có nghiệm ⇔ a^2+b^2 ≥ c^2⇔ 5^2+ m^2≥ (m+1)2.
⇔ 25+ m^2≥ m^2+2m + 1⇔24 ≥ 2m ⇔ m≤ 12

NV
19 tháng 10 2019

Do \(-1\le sinx\le1\)

\(\Rightarrow\) Để pt đã cho có nghiệm thì:

\(-1\le m+1\le1\)

\(\Rightarrow-2\le m\le0\)

NV
17 tháng 10 2019

\(cosx-m=0\Leftrightarrow cosx=m\)

Do \(-1\le cosx\le1\)

\(\Rightarrow-1\le m\le1\)

NV
17 tháng 10 2019

Để pt đã cho vô nghiệm thì:

\(1^2+\left(m-1\right)^2< \left(\sqrt{5}\right)^2\)

\(\Leftrightarrow\left(m-1\right)^2< 4\)

\(\Rightarrow-2< m-1< 2\)

\(\Rightarrow-1< m< 3\)