\(m^2x-1< mx...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 1 2021

a, m2x - 1 < mx + m

⇔ (m2 - m)x < m + 1

Bất phương trình vô nghiệm khi 

\(\left\{{}\begin{matrix}m^2-m=0\\m+1\le0\end{matrix}\right.\Leftrightarrow m\in\varnothing\)

Vậy phương trình có nghiệm với ∀m ∈ R

b, (m2 + 9)x + 3 ≥ m - 6mx

⇔ (m2 + 6m + 9)x ≥ m + 3

Phương trình có nghiệm đúng với ∀x khi m = -3

c, 8m2x - 4m2 ≥ 4m2x + 5mx + 9x - 12

⇔ 4m2x - 5mx - 9x ≥ 4m2 - 12

⇔ (4m2 - 5m - 9)x ≥ 4m2 - 12

Bất phương trình có nghiệm đúng với ∀x khi m = -1

 

 

 

NV
18 tháng 2 2020

a/ \(\left\{{}\begin{matrix}m+1>0\\\Delta'=\left(m-1\right)^2-3\left(m-1\right)\left(m+1\right)\le0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m>-1\\-m^2-m+2\le0\end{matrix}\right.\) \(\Rightarrow m\ge1\)

b/ \(\left\{{}\begin{matrix}m^2+4m-5< 0\\\Delta'=\left(m-1\right)^2-2\left(m^2+4m-5\right)\le0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m^2+4m-5< 0\\-m^2-10m+11\le0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}-5< m< 1\\\left[{}\begin{matrix}m\le-11\\m\ge1\end{matrix}\right.\end{matrix}\right.\)

Không tồn tại m thỏa mãn

NV
18 tháng 2 2020

c/ Do \(x^2-8x+20=\left(x-4\right)^2+4>0\) \(\forall x\) nên BPT nghiệm đúng với mọi x khi mẫu số âm với mọi x

\(\Rightarrow\left\{{}\begin{matrix}m< 0\\\Delta'=\left(m+1\right)^2-m\left(9m+4\right)< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< 0\\-8m^2-2m+1< 0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}m< 0\\\left[{}\begin{matrix}m< -\frac{1}{2}\\m>\frac{1}{4}\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow m< -\frac{1}{2}\)

d/ Do \(3x^2-5x+4>0\) \(\forall x\) nên BPT luôn đúng khi:

\(\left\{{}\begin{matrix}m-4>0\\\left(m+1\right)^2-4\left(2m-1\right)\left(m-4\right)< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m>4\\-7m^2+38m-15< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m>4\\\left[{}\begin{matrix}m< \frac{3}{7}\\m>5\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow m>5\)

NV
25 tháng 2 2020

a/ \(\Leftrightarrow\left(m^2-1\right)x< m^2-4m+3\)

- Với \(m=1\) BPT vô nghiệm

- Với \(m=-1\) BPT luôn đúng

- Với \(m\ne\pm1\) BPT luôn có nghiệm

Vậy \(m=1\) thì BPT vô nghiệm

b/ \(\Leftrightarrow\left(m^2-3m+2\right)x\ge m-1\Leftrightarrow\left(m-1\right)\left(m-2\right)x\ge m-1\)

- Với \(m\ne\left\{1;2\right\}\) BPT luôn có nghiệm

- Với \(m=1\Rightarrow0\ge0\) BPT có nghiệm

- Với \(m=2\Rightarrow0\ge1\) BPT vô nghiệm

Vậy \(m=2\) thì BPT vô nghiệm

NV
25 tháng 2 2020

c/ \(\Leftrightarrow-m^2>-4\Leftrightarrow m^2< 4\)

- Với \(\left[{}\begin{matrix}m\ge2\\m\le-2\end{matrix}\right.\) BPT vô nghiệm

- Với \(-2< m< 2\) BPT luôn đúng

Vậy \(\left[{}\begin{matrix}m\ge2\\m\le-2\end{matrix}\right.\) thì BPT vô nghiệm

d/ \(\Leftrightarrow\left(m+2\right)x>m^2+4m+4=\left(m+2\right)^2\)

Với \(m=-2\) BPT vô nghiêm

Với \(m\ne-2\) BPT luôn có nghiệm

Vậy \(m=-2\) thì BPT vô nghiệm

NV
25 tháng 5 2020

- Với \(x=0\) BPT luôn đúng

- Với \(x>0\)

\(\Leftrightarrow x+2\left(3-m\right)+\frac{1}{x}-4\sqrt{2\left(x+\frac{1}{x}\right)}\ge0\)

\(\Leftrightarrow x+\frac{1}{x}-4\sqrt{2\left(x+\frac{1}{x}\right)}+6\ge2m\)

Đặt \(\sqrt{2\left(x+\frac{1}{x}\right)}=t\) ; do \(x+\frac{1}{x}\ge2\Rightarrow t\ge2\)

BPT tương đương: \(\frac{t^2}{2}-4t+6\ge2m\)

\(\Leftrightarrow f\left(t\right)=t^2-8m+12\ge4m\)

Để BPT đúng với mọi \(t\ge2\)

\(\Leftrightarrow4m\le\min\limits_{t\ge2}f\left(t\right)\)

Xét \(f\left(t\right)\) khi \(t\ge2\) ; \(-\frac{b}{2a}=4>2\) ; \(a=1>0\)

\(\Rightarrow f\left(t\right)_{min}=f\left(4\right)=-4\)

\(\Rightarrow4m\le-4\Rightarrow m\le-1\)

7 tháng 5 2016

Đặt \(t=3^x,t>0\)

Bất phương trình trở thành :

\(m.t^2+9\left(m-1\right)t+m-1>0\)

\(\Leftrightarrow m\left(t^2+9t+1\right)>9t+1\)

\(\Leftrightarrow m>\frac{9t+1}{t^2+9t+1}\)

Bất phương trình đã cho nghiệm đúng với mọi x khi và chỉ khi :

\(m>max_{t>0}\frac{9t+1}{t^2+9t+1}\)

Xét hàm số \(f\left(t\right)=\frac{9t+1}{t^2+9t+1};t>0\)

Ta có : \(f'\left(t\right)=\frac{-9t-2}{\left(t^2+9t+1\right)^2}< 0,t>0\)

đây là hàm nghịch biến suy ra \(f\left(t\right)< f\left(0\right)=1\)

Do đó : \(\frac{9t+1}{t^2+9t+1}< 0,t>0\) nên các giá trị cần tìm là \(m\ge1\)