Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ : \(x\ge1\)
PT đã cho tương đương với :
\(\sqrt{3x-2}+\sqrt{x-1}=\left[3x-2+2\sqrt{3x^2-5x+2}+x-1\right]-6\)
\(\Leftrightarrow\sqrt{3x-2}+\sqrt{x-1}=\left(\sqrt{3x-2}+\sqrt{x-1}\right)^2-6\)
Đặt \(\sqrt{3x-2}+\sqrt{x-1}=t\left(t\ge1\right)\)
Khi đó : \(t^2-t-6=0\Leftrightarrow\orbr{\begin{cases}t=3\\t=-2\left(loai\right)\end{cases}}\)
\(\Rightarrow\sqrt{3x-2}+\sqrt{x-1}=3\)
từ đó dễ dàng tìm được x
Làm tiếp bài của @Thanh Tùng DZ
Thay t=3 vào cách đặt ta được \(\sqrt{3x-2}+\sqrt{x-1}=3\left(3a\right)\)
Ta có \(\left(3a\right)\Leftrightarrow4x-3+2\sqrt{3x^2-5x+2}=9\)
\(\Leftrightarrow\sqrt{3x^2-5x+2}=6-2x\)
\(\Leftrightarrow\hept{\begin{cases}6-2x\ge0\\3x^2-5x+2=36-24x+4x^2\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\le3\\x=2;x=17\end{cases}\Leftrightarrow x=2}\)
Bài 4:
a, \(\sqrt{3x+4}-\sqrt{2x+1}=\sqrt{x+3}\) (ĐK: \(x\ge\dfrac{-1}{2}\))
\(\Rightarrow\) \(\left(\sqrt{3x+4}-\sqrt{2x+1}\right)^2\) = x + 3
\(\Leftrightarrow\) \(3x+4+2x+1-2\sqrt{\left(3x+4\right)\left(2x+1\right)}=x+3\)
\(\Leftrightarrow\) \(4x+2=2\sqrt{6x^2+11x+4}\)
\(\Leftrightarrow\) \(2x+1=\sqrt{6x^2+11x+4}\)
\(\Rightarrow\) \(4x^2+4x+1=6x^2+11x+4\)
\(\Leftrightarrow\) \(2x^2+7x+3=0\)
\(\Delta=7^2-4.2.3=25\); \(\sqrt{\Delta}=5\)
Vì \(\Delta\) > 0; theo hệ thức Vi-ét ta có:
\(x_1=\dfrac{-7+5}{4}=\dfrac{-1}{2}\)(TM); \(x_2=\dfrac{-7-5}{4}=-3\) (KTM)
Vậy ...
Các phần còn lại bạn làm tương tự nha, phần d bạn chuyển \(-\sqrt{2x+4}\) sang vế trái rồi bình phương 2 vế như bình thường là được
Bài 5:
a, \(\sqrt{x+4\sqrt{x}+4}=5x+2\)
\(\Leftrightarrow\) \(\sqrt{\left(\sqrt{x}+2\right)^2}=5x+2\)
\(\Rightarrow\) \(\sqrt{x}+2=5x+2\)
\(\Leftrightarrow\) \(5x-\sqrt{x}=0\)
\(\Leftrightarrow\) \(\sqrt{x}\left(5\sqrt{x}-1\right)=0\)
\(\Leftrightarrow\) \(\left[{}\begin{matrix}\sqrt{x}=0\\5\sqrt{x}-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{25}\end{matrix}\right.\)
Vậy ...
Phần b cũng là hằng đẳng thức thôi nha \(\sqrt{x^2-2x+1}=\sqrt{\left(x-1\right)^2}=x-1\); \(\sqrt{x^2+4x+4}=\sqrt{\left(x+2\right)^2}=x+2\) rồi giải như bình thường là xong nha!
VD1:
a, \(\sqrt{2x-1}=\sqrt{2}-1\) (x \(\ge\) \(\dfrac{1}{2}\))
\(\Leftrightarrow\) \(2x-1=\left(\sqrt{2}-1\right)^2\) (Bình phương 2 vế)
\(\Leftrightarrow\) \(2x-1=2-2\sqrt{2}+1\)
\(\Leftrightarrow\) \(2x=4-2\sqrt{2}\)
\(\Leftrightarrow\) \(x=2-\sqrt{2}\) (TM)
Vậy ...
Phần b tương tự nha
c, \(\sqrt{3}x^2-\sqrt{12}=0\)
\(\Leftrightarrow\) \(\sqrt{3}x^2=\sqrt{12}\)
\(\Leftrightarrow\) \(x^2=2\)
\(\Leftrightarrow\) \(x=\pm\sqrt{2}\)
Vậy ...
d, \(\sqrt{2}\left(x-1\right)-\sqrt{50}=0\)
\(\Leftrightarrow\) \(\sqrt{2}\left(x-1\right)=\sqrt{50}\)
\(\Leftrightarrow\) \(x-1=5\)
\(\Leftrightarrow\) \(x=6\)
Vậy ...
VD2:
Phần a dễ r nha (Bình phương 2 vế rồi tìm x như bình thường)
b, \(\sqrt{x^2-x}=\sqrt{3-x}\) (\(x\le3\); \(x^2\ge x\))
\(\Leftrightarrow\) \(x^2-x=3-x\) (Bình phương 2 vế)
\(\Leftrightarrow\) \(x^2=3\)
\(\Leftrightarrow\) \(x=\pm\sqrt{3}\) (TM)
Vậy ...
c, \(\sqrt{2x^2-3}=\sqrt{4x-3}\) (x \(\ge\) \(\dfrac{\sqrt{3}}{2}\))
\(\Leftrightarrow\) \(2x^2-3=4x-3\) (Bình phương 2 vế)
\(\Leftrightarrow\) \(2x^2-4x=0\)
\(\Leftrightarrow\) \(2x\left(x-2\right)=0\)
\(\Leftrightarrow\) \(\left[{}\begin{matrix}2x=0\\x-2=0\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left[{}\begin{matrix}x=0\left(KTM\right)\\x=2\left(TM\right)\end{matrix}\right.\)
Vậy ...
Chúc bn học tốt! (Có gì không biết cứ hỏi mình nha!)
Vd1:
d) Ta có: \(\sqrt{2}\left(x-1\right)-\sqrt{50}=0\)
\(\Leftrightarrow\sqrt{2}\left(x-1-5\right)=0\)
\(\Leftrightarrow x=6\)
1) \(\sqrt[3]{x+1}=5\)
\(\Rightarrow x+1=125\)
\(\Rightarrow x=124\)
2) \(\sqrt[3]{1-3x^3}=-2\)
\(\Rightarrow1-3x^3=-8\)
\(\Rightarrow3x^3=9\)
\(\Rightarrow x=\sqrt[3]{3}\)
Đề sai r kìa ... Sửa lại theo ý mình nhé !
Hệ \(\hept{\begin{cases}\frac{3x}{\sqrt{3x+2}}-\frac{x}{y-3}=5\\\frac{2x}{\sqrt{3x+2}}+\frac{3x}{y-3}=7\end{cases}}\)(chỗ này cx có thể sửa thành 3x-2)
\(ĐKXĐ:\hept{\begin{cases}x>-\frac{2}{3}\\y\ne3\end{cases}}\)
Đặt \(\hept{\begin{cases}\frac{x}{\sqrt{3x+2}}=a\\\frac{x}{y-3}=b\end{cases}}\)
Hệ đã cho tương đương với hệ sau
\(\hept{\begin{cases}3a-b=5\\2a+3b=7\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}9a-3b=15\\2a+3b=7\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}11a=22\\2a+3b=7\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a=2\\2a+3b=7\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a=2\\b=1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\frac{x}{\sqrt{3x+2}}=2\left(1\right)\\\frac{x}{y-3}=1\left(2\right)\end{cases}}\)
Giải (1) ta đc :
\(\left(1\right)\Leftrightarrow x=2\sqrt{3x+2}\)
\(\Leftrightarrow\hept{\begin{cases}x>0\left(DoVP>0\forall x>-\frac{2}{3}\right)\\x^2=4\left(3x+2\right)\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x>0\\x^2-12x=8\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x>0\\x^2-12x+36=44\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x>0\\\left(x-6\right)^2=44\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x>0\\x=\pm2\sqrt{11}+6\end{cases}}\)
\(\Leftrightarrow x=6+2\sqrt{11}\)
Thay vào (2) sẽ tìm đc y
P/S: Số xấu quá nên tớ chỉ làm đến đây thôi -,-
\(\sqrt{5-3x}\) \(\ge0\) \(\Leftrightarrow5-3x\ge0\Leftrightarrow x\le\frac{5}{3}\)
\(\frac{1}{3x-1}\ge0\Leftrightarrow3x-1\ge0\Leftrightarrow x\ge\frac{1}{3}\)
\(\sqrt{\left(1-x\right)\left(1+x\right)}\ge0\)
\(\Leftrightarrow-1\le x\le1\)
Cau 1
Dk:5-3x > =0<=> x >=3/5
D = [3/5 ;+oo]