K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
30 tháng 9 2023

Để hàm số \(y = \frac{1}{{\sqrt {x - 2} }}\) xác định \( \Leftrightarrow \,\,x - 2 > 0\,\, \Leftrightarrow \,\,x > 2.\)

Vậy tập xác định của hàm số là: \(D = \left( {2; + \infty } \right).\)

Chọn B.

HQ
Hà Quang Minh
Giáo viên
23 tháng 9 2023

a) Ta thấy hàm số có nghĩa với mọi số thực nên \(D = \mathbb{R}\)

b)

Điều kiện: \(2 - 3x \ge 0 \Leftrightarrow x \le \frac{2}{3}\)

Vậy tập xác định: \(S = \left( { - \infty ;\frac{2}{3}} \right]\)

c) Điều kiện: \(x + 1 \ne 0 \Leftrightarrow x \ne  - 1\)

Tập xác định: \(D = \mathbb{R}\backslash \left\{ { - 1} \right\}\)

d) Ta thấy hàm số có nghĩa với mọi \(x \in \mathbb{Q}\) và \(x \in \mathbb{R}\backslash \mathbb{Q}\) nên tập xác định: \(D = \mathbb{R}\).

18 tháng 12 2020

undefined

24 tháng 9 2023

Tham khảo:

a) Để xác định tập hợp \(A = (1;3) \cup [ - 2;2]\), ta vẽ sơ đồ sau đây:

Từ sơ đồ, ta thấy \(A = [ - 2;3)\)

b) Để xác định tập hợp \(B = ( - \infty ;1) \cap [0;\pi ]\), ta vẽ sơ đồ sau đây:

Từ sơ đồ, ta thấy \(B = [0;1)\)

 c) Để xác định tập hợp \(C = [\frac{1}{2};3){\rm{\backslash }}(1; + \infty )\), ta vẽ sơ đồ sau đây:

Từ sơ đồ, ta thấy \(C = [\frac{1}{2};1]\)

d) Để xác định tập hợp \(D = {C_\mathbb{R}}[ - 1; + \infty )\), ta vẽ sơ đồ sau đây:

Từ sơ đồ, ta thấy \(D = ( - \infty ; - 1)\)

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

a) Nửa khoảng \(\left( {\left. { - 2\pi ;2\pi } \right]} \right.\)

b) \(\left\{ {x \in \mathbb{R}|\;\left| x \right| \le \sqrt 3 } \right\} = \left\{ {x \in \mathbb{R}|\; - \sqrt 3  \le x \le \sqrt 3 } \right\}\)

Đoạn \(\left[ {\left. { - \sqrt 3 ;\sqrt 3 } \right]} \right.\)

c) Khoảng \(\left( { - \infty ;0} \right)\)

d) \(\left\{ {x \in \mathbb{R}|\;1 - 3x \le 0} \right\} = \left\{ {x \in \mathbb{R}|\;x \ge \frac{1}{3}} \right\}\)

Nửa khoảng \(\left. {\left[ {\frac{1}{3}; + \infty } \right.} \right)\)

17 tháng 10 2019

Mọi người giải thích chi tiết cho em với ạ.Em cảm ơn

18 tháng 10 2019

y xác định khi :

X3 - 1 \(\ne\)0

=> X \(\ne\)1.

Vậy TXD : D =R\ {1} hay D = (-\(\infty\);1) \(\cup\)( 1 ; + \(\infty\))

24 tháng 9 2023

Tham khảo:

Ta có:

Suy ra phần bù của tập hợp \(\left( { - \infty ; - 2} \right)\) trong \(\mathbb{R}\) là: \(\mathbb{R}{\rm{\backslash }}\left( { - \infty ; - 2} \right) = [ - 2; + \infty )\)

Suy ra phần bù của tập hợp \([ - 5; + \infty )\) trong \(\mathbb{R}\) là: \(\mathbb{R}{\rm{\backslash }}[ - 5; + \infty ) = ( - \infty ; - 5)\)